
For Palm OS® & Pocket PC Handhelds

MobileApp Designer Guide

 Thacker Network Technologies Inc.

Satellite Forms 8
Development Guide

2

Legal Notice

No part of this publication may be reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any computer language, in any form or by any
means, without the express written permission of Thacker Network Technologies Inc.

Satellite Forms, and the Satellite Forms logo are trademarks of Thacker Network
Technologies Inc. All other company names and product names are trade names,
trademarks, or registered trademarks of their respective owners.

Palm OS and HotSync are registered trademarks of Palm, Inc. Palm is a trademark of
Palm, Inc. All other company and product names are trademarks of their respective
owners.

Satellite Forms is protected by U.S. Patent Nos. 5,392,390, 5,666,553, 5,684,990,
5,701,423, 5,943,676, 6,044,381, 6,141,664, 6,212,529, 6,330,568, and 6,405,218.
Other patents pending.

Copyright © 2005, 2010 Thacker Network Technologies Inc. All rights reserved.

Thacker Network Technologies Inc., 5338 - 51 Ave., Lacombe, Alberta T4L 1N5
Canada.

http://www.SatelliteForms.net

Document revision history:

2005-04-28 -Updated references from Intellisync to Thacker Network Technologies
Inc., version V6.0.1 release.

2005-10-26--Updated for SatForms 6.1.0 release.

2006-02-16--Updated for SatForms 6.1.1 release.

2006-10-10--Updated for SatForms 7.0 release.

2007-11-19--Updated for SatForms 7.1 release.

2008-05-23--Updated for SatForms 7.2 release.

2010-07-12--Updated for SatForms 8 release.

Contents
Chapter 1

i

Contents

Preface
Who should read this guide .1
What this guide contains .1
Satellite Forms documentation .2
Document conventions .3
Technical Support .3

Contacting Technical Support .4

Chapter 1
What’s New

What's New in Satellite Forms Version 8 .5
What's New in Satellite Forms V7.2 .8
What's New in Satellite Forms V7.1 .11
What's New in Satellite Forms V7.0 .15

Chapter 2
Satellite Forms Overview

Introducing Satellite Forms .19
Major components of Satellite Forms .20
Licensing Satellite Forms .20
Relational databases and Satellite Forms .21
How Satellite Forms uses tables .21
How Satellite Forms uses forms .22
Controls used in Satellite Forms .24
Multiple forms and pages .26
Navigating between pages and records .27
Scripting .27
Extensions: SFX plug-ins and SFX Custom controls .27
Targets and Platforms .28

Satellite Forms 8
Development Guide

ii

Chapter 3
Installing Satellite Forms

System requirements .29
Satellite Forms development computer .29
Satellite Forms runtime engine. .30

Upgrading from previous releases. .31
Installation overview .31

Installing the Satellite Forms engine on handheld devices.32
Uninstalling Satellite Forms .36

Chapter 4
Quick Tour

Overview .39
Step 1. Opening a new project. .39
Step 2. Creating the CtvCustomers table. .41
Step 3. Creating the Main form. .47
Step 4. Creating the Notes form .54
Step 5. Assigning actions to the buttons .58
Step 6. Setting project properties .60
Step 7. Downloading the application to a handheld and testing63
Step 8. Uploading changes and verifying .64

Conclusion .65

Chapter 5
MobileApp Designer Reference

MobileApp Designer main window .67
MobileApp Designer menus .78

MobileApp Designer File menu .78
MobileApp Designer Edit menu. .80
MobileApp Designer View menu. .85
MobileApp Designer Handheld menu .88
MobileApp Designer Build menu. .89
MobileApp Designer Window menu .92
MobileApp Designer Help menu .93

MobileApp Designer toolbars .93
General toolbar .94
MobileApp Designer Control Palette toolbar .95
MobileApp Designer Misc toolbar .97

Contents
Chapter 6

iii

Chapter 6
Creating your Application

Planning your application .99
Overview: phases of application development .100

Phase 1 – Working with MobileApp Designer. .101
Phase 2 – Integrating applications with your database management system .102
Phase 3 – Deploying your application .102

Phase 1: Working with MobileApp Designer .103
Working with tables .103

Creating a new table .104
Importing tables .108
Editing table data .113

Creating and editing forms .114
Form design window .114
Form properties. .116

Working with menus .118
Working with Menubars .118
Menu Properties .119
Menu Item Properties .123

Using controls .124
Working with controls .124
Control Properties. .125

Configuring application properties .170
Creating and Assigning a launcher icon image for your application 171
Creating a splash screen .174
Installing the engine and downloading the application .175

Testing the application .175

Chapter 7
Using Actions, Filters, Extensions, and Color

Setting up actions .177
Control actions .178

Using table filters .184
Adding or editing a filter .185
Mathematical operators for filters .186
Filter tips. .188

Adding extensions to Satellite Forms .188
Using color in your application .190

Platform-specific considerations .190
Color Values .191

Satellite Forms 8
Development Guide

iv

Coloring the Form .191
Coloring Controls .191
Setting Extra Colors .192

Chapter 8
Integrating with your Database

Overview .195
Integrating a Satellite Forms database with a Corporate database196

Satellite Forms HotSync ActiveX control for Palm OS .197
Satellite Forms HotSync ActiveX control events. .200
HotSyncstatus event parameters .200
Satellite Forms HotSync ActiveX control methods .200
Satellite Forms HotSync ActiveX control properties .207

HotSync and Satellite Forms HotSync ActiveX control .209
HotSync without ActiveX .210
Satellite Forms Synchronization for Pocket PC .211
SFConvertPDB Utility .211
Satellite Forms ActiveSync ActiveX control for Pocket PC.214

Satellite Forms ActiveSync ActiveX control events .215
Satellite Forms ActiveSync ActiveX control methods.215
Satellite Forms ActiveSync ActiveX control properties 219

ActiveSync without ActiveX. .219
Satellite Forms CeRemote.dll methods .220
Satellite Forms CeRemote.dll result values .223

Chapter 9
Using Satellite Forms on Handheld Devices

Starting the Satellite Forms engine .225
Using the Satellite Forms Applications list .226

Palm OS Satellite Forms application menus .227

Chapter 10
Deploying your Application

Overview .229
Deploying Palm OS applications .230

Create and assign application icons .230
Change the default creator ID. .232
Modify the HotSyncStatus Handler .232

Contents
Chapter 11

v

Update older applications .233
Set up the redistribution kit .234
Distributing the application .237
Upgrading previous releases of your application .239
Installing redistributable components. .239
Installing your application on the device .241

Working with the Palm OS install utility .242
Deploying Pocket PC applications .244

Create and assign application icons .244
Prepare the ActiveSync event handler application .246
Set up the redistribution kit .246
Distributing the application .249
Installing redistributable components. .250
Installing your application on the device .251

Working with the Pocket PC install utility .252
Install utility command line switches .252
Working with the install utility configuration file .252

Creating a custom installer for Palm or Pocket PC applications.254

Chapter 11
Satellite Forms Scripting Language Reference

Overview of the Satellite Forms scripting language .257
The Satellite Forms object model .258

Object properties, methods, and events .258
SFX plug-in and control properties and methods. .268
SFX plug-in and control extensions included with Satellite Forms268
Accessing properties. .308
Using methods .308
Understanding events .309

Creating a Satellite Forms script .309
Satellite Forms scripting language keywords and operators311

Satellite Forms scripting language keywords. .311
Satellite Forms scripting language conversion operators311
Satellite Forms scripting language comparison operators 312
Satellite Forms scripting language arithmetic operators 312
Satellite Forms scripting language logical and bitwise operators 313
Satellite Forms scripting language string operators .313
Satellite Forms scripting language miscellaneous operators 314

Satellite Forms scripting language reference .314

Satellite Forms 8
Development Guide

vi

Chapter 12
Satellite Forms API Reference

Satellite Forms API Overview .467
Creating an SFX plug-In .468
Creating an SFX Custom control .471
API function reference by category. .472

Memory allocation functions .472
Table Operation functions .472
Form operation functions .474
Control operation functions .475
Control action functions .476
UI object conversion functions. .476
Format translation functions. .477
SFX extension initialization functions .477
Floating-point operation functions .478
Scripting functions .478
Message and error functions. .479
Miscellaneous functions .480

Alphabetical API Reference .481

Chapter 13
Sample Application: Work Order

Work Order application: creating the tables .528
wrkSites Table .528
wrkWorkItems Table .530
wrkLookup Table .533

Work Order application: creating the forms .534
Creating the Main Form .534
Creating the Info Form .541
Creating the Notes Form. .543
Creating the Site Summary Form .544
Creating the Work Item Form .548
Final steps .552

Conclusion. .553

Appendix A
Tips and Tricks

Filtering information .555
Creating unique record IDs .556

Contents
Appendix A

vii

Initializing new records .556
Initializing with filters .556
Initializing with scripts .557

Linking Drop List controls .557
Creating graphical Check Box and Radio Button controls .559
Drawing on bitmaps .559
Creating Color Icons for Palm with MS Paint .560
Optimizing user permissions .560

Index .565

Satellite Forms 8
Development Guide

viii

Examples vii

Examples

Example 10.1 HotSyncStatus handler deployment code .233
Example 10.2 Sample Install.ini file .236
Example 10.3 Sample Install.bat file .237
Example 10.4 Sample Pocket PC Install.ini file .247
Example 10.5 Sample Pocket PC Install.bat file .248
Example 10.6 Sample Pocket PC configuration file .252
Example A.1 Script Example .557

Satellite Forms 8
Development Guide

viii

Figures ix

Figures

Figure 2.1 Clients table. .21
Figure 2.2 Clients to Visit form .23
Figure 2.3 Clients to Visit form and current record of linked Clients table. .24
Figure 2.4 Form with multiple pages .26
Figure 3.1 SDK Installer dialog box. .34
Figure 3.2 Waiting for HotSync dialog box .34
Figure 3.3 Palm OS engine setup successful message box .34
Figure 3.4 Open dialog box .35
Figure 4.1 Add Target dialog box .40
Figure 4.2 MobileApp Designer with new project open .41
Figure 4.3 Table dialog box .42
Figure 4.4 Edit Column dialog box .43
Figure 4.5 Table dialog box, Layout tab .44
Figure 4.6 Table dialog box, Editor tab .45
Figure 4.7 CtvCustomers table with data entered .46
Figure 4.8 Form design window. .47
Figure 4.9 Main form .48
Figure 4.10 Main form with Title control .49
Figure 4.11 Main form with Text control. .50
Figure 4.12 Main form with Edit control .51
Figure 4.13 Main form with Text and Edit controls. .53
Figure 4.14 Main form with Notes button .54
Figure 4.15 Notes form. .55
Figure 4.16 Notes form with Title control .56
Figure 4.17 Notes form with Paragraph control. .57
Figure 4.18 Notes form with OK button .58
Figure 4.19 Control Action and Filters dialog box. .59
Figure 4.20 Control Action and Filters dialog box for Notes button .60
Figure 4.21 Project Properties dialog box .61
Figure 4.22 Project Properties dialog box .62
Figure 4.23 Workspace palette, UI tab for completed Customers to Visit application63
Figure 4.24 Download Application to Handheld progress indicator .63
Figure 5.1 MobileApp Designer main window .68
Figure 5.2 Add Target dialog box .69

Satellite Forms 8
Development Guide

x

Figure 5.3 MobileApp Designer window with new project open .70
Figure 5.4 Workspace palette (undocked), UI tab .71
Figure 5.5 Workspace palette (undocked), Tables tab .74
Figure 5.6 Workspace palette (undocked), Scripts tab. .76
Figure 5.7 Workspace palette (undocked), Extensions tab .77
Figure 5.8 MobileApp Designer File menu .79
Figure 5.9 MobileApp Designer Edit menu .80
Figure 5.10 Find dialog box .81
Figure 5.11 Find in Project dialog box. .81
Figure 5.12 Replace dialog box .82
Figure 5.13 Project Properties dialog box .83
Figure 5.14 MobileApp Designer View menu .85
Figure 5.15 Available Extensions dialog box. .86
Figure 5.16 MobileApp Designer Preferences dialog box .87
Figure 5.17 MobileApp Designer Handheld menu .88
Figure 5.18 MobileApp Designer Build menu .89
Figure 5.19 Batch Build dialog box .89
Figure 5.20 Targets dialog box. .90
Figure 5.21 Add Target dialog box .90
Figure 5.22 Edit Target dialog box. .91
Figure 5.23 Code Options dialog box. .92
Figure 5.24 MobileApp Designer Window menu .92
Figure 5.25 MobileApp Designer Help menu .93
Figure 5.26 MobileApp Designer General toolbar (undocked) .94
Figure 5.27 MobileApp Designer Control Palette toolbar (undocked) .95
Figure 5.28 MobileApp Designer Misc toolbar .97
Figure 6.1 Table dialog box .104
Figure 6.2 Edit Column dialog box .106
Figure 6.3 Import Table wizard, Select Plug-In step .108
Figure 6.4 Import Table wizard, ODBC Connection step, Data source selected. .109
Figure 6.5 Import Table wizard, ODBC Connection step, Driver selected .110
Figure 6.6 Import Table wizard, Select ODBC Item step .110
Figure 6.7 Import Table wizard, Select Fields step .111
Figure 6.8 Import Table wizard, Current Settings step .112
Figure 6.9 Import Table wizard, Column Mapping step .112
Figure 6.10 Table dialog box, Editor tab .113
Figure 6.11 Form design window. .115
Figure 6.12 Propertyspace palette (undocked) showing Form properties .116
Figure 6.13 Menubar Propertyspace palette. .118
Figure 6.14 Edit Menubar dialog box. .119
Figure 6.15 Menu Propertyspace palette .120

Figures xi

Figure 6.16 Menu Properties dialog box .121
Figure 6.17 Menu Item Properties dialog box .122
Figure 6.18 Menu Item Propertyspace palette .123
Figure 6.19 Form with Title control .126
Figure 6.20 Title control Propertyspace palette .127
Figure 6.21 Form with Text control .128
Figure 6.22 Text control Propertyspace palette .129
Figure 6.23 Form with Edit control .130
Figure 6.24 Edit control Propertyspace palette .131
Figure 6.25 Form with Paragraph control .133
Figure 6.26 Paragraph control Propertyspace palette. .134
Figure 6.27 Form with Check Box control. .136
Figure 6.28 Check Box control Propertyspace palette .137
Figure 6.29 Form with Radio Button control .139
Figure 6.30 Radio Button control Propertyspace palette .140
Figure 6.31 Form with Button control .142
Figure 6.32 Button control Propertyspace palette .143
Figure 6.33 Form with List Box control. .145
Figure 6.34 List Box control Propertyspace palette .146
Figure 6.35 Displayed Columns of List Control dialog box .147
Figure 6.36 Add Column dialog box .148
Figure 6.37 Add Column Dialog Box with Perform Lookup box checked .148
Figure 6.38 Form with Drop List control .149
Figure 6.39 Drop List control Propertyspace palette .151
Figure 6.40 Form with Lookup control .153
Figure 6.41 Lookup control Propertyspace palette. .154
Figure 6.42 Form with Ink control .156
Figure 6.43 Ink control Propertyspace palette .157
Figure 6.44 Form with Bitmap control. .160
Figure 6.45 Bitmap control Propertyspace palette .161
Figure 6.46 Form with Graffiti Shift Indicator control .162
Figure 6.47 Graffiti Shift Indicator control Propertyspace palette. .163
Figure 6.48 Form with Auto Stamp control .164
Figure 6.49 Auto Stamp control Propertyspace palette .165
Figure 6.50 Available Extensions dialog box. .167
Figure 6.51 Insert SFX Control into Form dialog box .167
Figure 6.52 Form with Slider control .168
Figure 6.53 Slider SFX Custom control Propertyspace palette .169
Figure 7.1 Control Action and Filters dialog box. .178
Figure 7.2 Control Actions and Filters dialog box, Jump to Form action .180
Figure 7.3 Control Actions and Filters dialog box, Jump to Multiple Forms action181

Satellite Forms 8
Development Guide

xii

Figure 7.4 Create New Jump Target dialog box. .181
Figure 7.5 Control Action and Filters dialog box, Launch App action .183
Figure 7.6 Control Action and Filters dialog box, Filters tab .185
Figure 7.7 Create New Filter dialog box .186
Figure 7.8 Available Extensions dialog box. .189
Figure 8.1 Satellite Forms data storage architecture .197
Figure 8.2 Access 2000 Insert ActiveX Control dialog box .198
Figure 8.3 Access 2000 form with Satellite Forms ActiveX control .198
Figure 8.4 Satellite Forms API for Access. .199
Figure 11.1 Satellite Forms object model. .258
Figure 11.2 Example of Satellite Forms event flow. .309
Figure 13.1 wrkSites Table Layout tab .529
Figure 13.2 wrkSites Table Editor tab .530
Figure 13.3 wrkWorkItems Table Layout tab .531
Figure 13.4 wrkWorkItems Table Editor tab .532
Figure 13.5 wrkLookup Table Layout tab .533
Figure 13.6 wrkLookup Table Editor tab .534
Figure 13.7 Main form properties .535
Figure 13.8 Main form controls .536
Figure 13.9 Main form List Control properties .537
Figure 13.10 Hidden Edit control properties .538
Figure 13.11 Info Button control properties. .539
Figure 13.12 Work List table filter properties .540
Figure 13.13 Info form properties .541
Figure 13.14 Info form with controls .542
Figure 13.15 Notes form with controls. .543
Figure 13.16 Notes Form Paragraph control properties .544
Figure 13.17 Site Summary form with controls .545
Figure 13.18 Site Summary Form Lookup control properties .546
Figure 13.19 Site Summary Form List Box control properties .547
Figure 13.20 Site Summary List Box control: COMPLETED Column Lookup properties 548
Figure 13.21 Work Item Form properties. .549
Figure 13.22 Work Item Form with controls .550
Figure 13.23 Work Item Form Yes Radio Button control Properties .551
Figure 13.24 Project Properties dialog box .553

Tables xiii

Tables

Table 4.1 CtvCustomers table, sample data .45
Table 5.1 UI tab root icons .71
Table 5.2 Workspace palette, UI tab mouse actions .72
Table 5.3 Tables tab root icon .74
Table 5.4 Workspace palette, Tables tab mouse actions .75
Table 5.5 Scripts tab root icon. .76
Table 5.6 Workspace palette, Scripts tab mouse actions. .76
Table 5.7 Extensions tab root icon .77
Table 5.8 Workspace palette, Extensions tab mouse actions .78
Table 5.9 MobileApp Designer General toolbar buttons .94

Table 5.10 MobileApp Designer Control Palette toolbar buttons. .95
Table 5.11 MobileApp Designer Misc toolbar buttons .97

Table 6.1 Satellite Forms date format example. .107
Table 6.2 Satellite Forms time format example .107
Table 6.3 Form properties .117
Table 6.4 Menubar properties .118
Table 6.5 Menu properties. .120
Table 6.6 Menu Item properties .123
Table 6.7 Title control properties .127
Table 6.8 Text control properties .129
Table 6.9 Edit control properties .131

Table 6.10 Paragraph control properties .134
Table 6.11 Check Box control properties .137
Table 6.12 Radio Button control properties .140
Table 6.13 Button control properties. .143
Table 6.14 List Box control properties .146
Table 6.15 Drop List control properties .152
Table 6.16 Lookup control properties .154
Table 6.17 Ink control properties .157
Table 6.18 Bitmap control properties .161
Table 6.19 Graffiti Shift Indicator control properties .163
Table 6.20 Auto Stamp control properties .165
Table 6.21 Slider SFX Custom control properties .169

Table 7.1 Control actions .178

Satellite Forms 8
Development Guide

xiv

Table 7.2 Built-in application names .183
Table 7.3 Palm OS user interface element types. .192
Table 8.1 HotSync status event parameters. .200
Table 8.2 Satellite Forms HotSync ActiveX control methods .201
Table 8.3 Satellite Forms HotSync ActiveX control properties .207
Table 8.4 Satellite Forms ActiveX control API usage .210
Table 8.5 Satellite Forms ActiveSync ActiveX control methods .215
Table 8.6 Satellite Forms ActiveSync ActiveX control properties .219
Table 8.7 Satellite Forms CeRemote.dll methods .220
Table 8.8 Satellite Forms CeRemote.dll function result values .223
Table 9.1 Satellite Forms Records menu. .227
Table 9.2 Satellite Forms Edit menu .227
Table 9.3 Satellite Forms Options menu commands. .228

Table 11.1 App object property. .259
Table 11.2 App object methods. .259
Table 11.3 App object events .260
Table 11.4 Control object properties .261
Table 11.5 Control object methods .261
Table 11.6 Control object events. .261
Table 11.7 Control collection properties .262
Table 11.8 Control collection methods .262
Table 11.9 Control collection events. .262

Table 11.10 Extension object properties .262
Table 11.11 Extension object methods .262
Table 11.12 Extension object events .262
Table 11.13 Extensions collection properties. .263
Table 11.14 Extensions collection methods .263
Table 11.15 Extensions collection events .263
Table 11.16 Field object properties .263
Table 11.17 Field object method .263
Table 11.18 Field object events. .263
Table 11.19 Field collection properties .264
Table 11.20 Field collection method .264
Table 11.21 Field collection events. .264
Table 11.22 Form object properties. .264
Table 11.23 Form object methods .264
Table 11.24 Form object events .265
Table 11.25 Form collection properties. .265
Table 11.26 From collection methods .266
Table 11.27 Form collection events .266
Table 11.28 Table object properties .266

Tables xv

Table 11.29 Table object methods. .266
Table 11.30 Table object events .267
Table 11.31 Table collection properties .268
Table 11.32 Table collection methods. .268
Table 11.33 Table collection events .268
Table 11.34 SFX plug-in and control extensions included with Satellite Forms268
Table 11.35 Aceeca IDVERIFI Bar Code extension methods .270
Table 11.36 Battery Info extension methods. .271
Table 11.37 Color Graphics extension methods .271
Table 11.38 Colorizer extension methods .273
Table 11.39 Color Slider control properties .273
Table 11.40 Color Slider control methods .274
Table 11.41 ConnectionMgr extension methods. .275
Table 11.42 DatalogicScan control properties .276
Table 11.43 DatalogicScan control methods. .276
Table 11.44 DynamicInputArea control properties. .277
Table 11.45 DynamicInputArea extension methods .277
Table 11.46 EditEx extension methods .278
Table 11.47 FindFiles extension methods .278
Table 11.48 FormNavHelper extension methods .279
Table 11.49 Generic extension method .280
Table 11.50 GoogleMaps extension methods .280
Table 11.51 GPS extension methods. .280
Table 11.52 HoneywellScan control properties .281
Table 11.53 HoneywellScan control methods. .281
Table 11.54 HyperLink control properties .282
Table 11.55 HyperLink extension methods. .282
Table 11.56 InkHelper extension methods .283
Table 11.57 IntermecScan control properties .284
Table 11.58 IntermecScan control methods .284
Table 11.59 JanamUtils extension methods .284
Table 11.60 LaunchReturn extension methods .285
Table 11.61 LaunchURL extension methods .286
Table 11.62 Math extension methods .286
Table 11.63 Memory extension methods .287
Table 11.64 Printer extension methods .288
Table 11.65 Puma Beam DB extension methods .289
Table 11.66 Puma Data Manager extension methods .290
Table 11.67 Puma Error Manager extension methods .291
Table 11.68 Puma Resource Manager extension methods .291
Table 11.69 Px Screen Tool extension methods .292

Satellite Forms 8
Development Guide

xvi

Table 11.70 Random Number Generator extension methods .292
Table 11.71 ScreenSize extension methods .293
Table 11.72 Serial Port extension methods .293
Table 11.73 ShowImage control properties. .294
Table 11.74 ShowImage extension methods .294
Table 11.75 Slider control properties .295
Table 11.76 Slider control methods. .296
Table 11.77 SocketScan control properties .296
Table 11.78 SocketScan control methods .296
Table 11.79 Square Root extension methods .297
Table 11.80 Strings extension methods. .298
Table 11.81 Symbol Integrated Scanner control properties .299
Table 11.82 Symbol Integrated Scanner control methods. .299
Table 11.83 Symbol MSR control methods .302
Table 11.84 SysUtils extension methods. .303
Table 11.85 TCPIP Winsock/Internet extension methods .305
Table 11.86 UnitechScan control properties .306
Table 11.87 UnitechScan control methods .306
Table 11.88 WM5Camera extension methods .307
Table 11.89 Satellite Forms scripting language keywords. .311
Table 11.90 Satellite Forms scripting language conversion operators .311
Table 11.91 Satellite Forms scripting language comparison operators. .312
Table 11.92 Satellite Forms scripting language arithmetic operators .312
Table 11.93 Satellite Forms scripting language logical and bitwise operators313
Table 11.94 Satellite Forms scripting language string operators .313
Table 11.95 Satellite Forms scripting language miscellaneous operators.314

Table 12.1 Standard events available to extensions .469
Table 12.2 Extension-specific events .470
Table 12.3 Memory allocation functions. .472
Table 12.4 Table operation functions .472
Table 12.5 Form operation functions .474
Table 12.6 Control operation functions. .475
Table 12.7 Control action functions .476
Table 12.8 Object conversion functions .476
Table 12.9 Format translation functions. .477

Table 12.10 Extension initialization functions .477
Table 12.11 Floating-point operation functions .478
Table 12.12 Scripting functions .478
Table 12.13 Message and error functions .479
Table 12.14 Miscellaneous functions .480

Table A.1 Categories Table .558

Tables xvii

Table A.2 Items Table .558

Satellite Forms 8
Development Guide

xvi-

Preface
Who should read this guide

1

Preface

This preface provides information about:

• Who should read this guide

• Contents of this guide

• Other Satellite Forms® MobileApp Designer documentation

• Technical Support

• Documentation conventions used in this guide

Who should read this guide
Developers responsible for creating, maintaining, and installing custom applications
created with Satellite Forms should read this guide.

What this guide contains
This guide contains the following chapters:

• Preface (this chapter)

Provides and overview of the Satellite Forms Development Guide,
documentation conventions, other useful documents, and technical support
contact information.

• Chapter 1, What’s New

Provides an overview new features in this release.

• Chapter 2, Satellite Forms Overview

Describes the fundamental concepts of Satellite Forms. We strongly
recommend that you read this chapter and the Quick Tour chapter before
getting into the more detailed information on how to use MobileApp Designer.
Understanding how Satellite Forms organizes and accesses information is
essential for creating applications with MobileApp Designer.

• Chapter 3, Installing Satellite Forms

Presents system requirements for using the development environment and
instructions for installing and testing Satellite Forms.

• Chapter 4, Quick Tour

Satellite Forms 8
Development Guide

2

Presents a brief tutorial for using MobileApp Designer to design and build your
first Satellite Forms application.

• Chapter 5, MobileApp Designer Reference

Provides a complete reference to all MobileApp Designer visual tools.

• Chapter 6, Creating your Application

Provides steps required for developing your Satellite Forms application.

• Chapter 7, Using Actions, Filters, Extensions, and Color

Presents information regarding the use of actions, filters, and SFX extensions to
enhance the power and flexibility of your Satellite Forms applications.

• Chapter 8, Integrating with your Database

Presents information on how to integrate Satellite Forms with your database
application.

• Chapter 9, Using Satellite Forms on Handheld Devices

Explains how to use the Satellite Forms engine on handheld devices.

• Chapter 10, Deploying your Application

Provides the lists and steps required for deploying your Satellite Forms
application.

• Chapter 11, Satellite Forms Scripting Language Reference

Provides a complete reference to the Satellite Forms scripting language, a
Visual Basic-like language you can use to enhance the power and flexibility of
your applications.

• Chapter 12, Satellite Forms API Reference

Provides a complete reference to the Satellite Forms API. You can use the API
functions described in this chapter to write your own SFX plug-in extensions
and SFX Custom controls.

• Chapter 13, Sample Application: Work Order

Presents a complete description of a real-world sample application.

• Appendix A, Tips and Tricks

Offers Satellite Forms programming tips and tricks to help you in develop
effective, efficient applications.

• Glossary

A complete glossary of specialized terms employed in this guide.

Satellite Forms documentation
For additional information on working with MobileApp Designer to create custom
applications, refer to the online help and to the guides listed below. Satellite Forms
documentation is available on the Satellite Forms Installation CD and in the Docs
directory in the MobileApp Designer installation directory.

Preface
Document conventions

3

• Satellite Forms MobileApp Designer Development Guide: (This document)
Satellite Forms MobileApp Designer system requirements, upgrade, and
installation information. Conceptual, procedural, and troubleshooting information
on creating, deploying and maintaining custom applications.

It is available in both searchable help (SatFormsHelp.chm) and Adobe PDF
format (SF_MobileApp_Guide.pdf).

• Readme: Important Satellite Forms issues that are not included in other product
documentation, in ASCII text format.

\Satellite Forms 8\Doc\SatFormsReadMe.txt

• Satellite Forms KnowledgeBase: The KnowledgeBase (KB) contains technical
articles including several How To guides, as well as known problems in the
current release. It is a searchable help file named SatFormsKB.chm. Updated
versions of the KnowledgeBase are searchable and downloadable online at our
website: http://www.satelliteforms.net/knowledgebase.htm

• Satellite Forms Solutions Guide: The Solutions Guide is a searchable database of
collection of solutions for SatForms developers, organized into various categories.
It is named SatFormsSolutionsGuide.chm. The intent is to provide a
comprehensive directory of solutions and solution providers that Satellite Forms
developers can access to enhance their handheld applications. Updated versions of
the Solutions Guide are searchable and downloadable online at our website:
http://www.satelliteforms.net/solutions.htm

Document conventions
This document uses the following conventions:

• Important information and application names appear in bold text, as shown in the
following example: Guidgen.exe

• Interface items you must select or click are in boldface font.

• Information or code you must type, as well as function, event, and defined names
are in monospace font.

• Menu selections are indicated as follows: File > Import > MPX.

• Variables are in italic font and may be enclosed in greater than and less than
symbols, for example, <server name>.

Substitute the correct information for the specified variable before executing the
command.

• If you are viewing this document online, hyperlinks appear in blue text.

Technical Support
There are several sources of information that can help you get the answers you need.
Please complete the following steps before contacting technical support:

http://www.satelliteforms.net/knowledgebase.htm
http://www.satelliteforms.net/solutions.htm

Satellite Forms 8
Development Guide

4

1 Review the Readme file. The Readme file is updated with the latest information for
each new version of the program. You can find the Readme file on the product CD
and in the installation directory.

2 Review this guide. It contains information on system requirements, upgrading, and
configuring Satellite Forms MobileApp Designer.

3 If the product installed successfully, but there are other issues:

• Use the online help system installed with MobileApp Designer.

4 Visit the Satellite Forms web site at http://www.satelliteforms.net/.

5 Join the SatFormsDev Discussion Forum at http://www.satelliteforms.net/
forum.htm for an online community of Satellite Forms developers.

Contacting Technical Support
Satellite Forms is registered automatically when you purchase the software. If you
have reviewed the product documentation and are still experiencing difficulties with
Satellite Forms, go to the Support Request on the website at
http://www.satelliteforms.net/supportform.htm. On the Support Files page, visit the
KnowledgeBase or other links.

When you contact Technical Support, please have the following information
available:

• The Satellite Forms MobileApp Designer license key. This license key was
emailed to you when you purchased Satellite Forms.

• A detailed description of the problem, including the steps you took leading up to
it, and any error messages you received.

• The operating system version and language of the development computer on
which you installed Satellite Forms MobileApp Designer.

• If you installed from CD, the Satellite Forms MobileApp Designer CD.

http://www.satelliteforms.net/forum.htm
http://www.satelliteforms.net/forum.htm
http://www.satelliteforms.net
www.satelliteforms.net/supportform.htm

What’s New
What's New in Satellite Forms Version 8

5

Chapter 1
What’s New

If you are already familiar with Satellite Forms, read this chapter to learn about new
features and improvements added to Satellite Forms in version 8.

What's New in Satellite Forms Version 8
Satellite Forms 8 introduces several exciting and powerful new features since the
previous release, and also includes several important bug fixes. This includes the
addition of new script language keywords, new extensions and sample projects, and
updated documentation. The new and improved features are highlighted below.

New and enhanced features in version 8:

1 New capability to add color to forms and controls! With the new Colorizer
extension, you can set form and control colors to enhance the asthetic appeal of
your application, or to convey information with more impact. You can set a color
theme to use throughout your application, modify colors on a form-by-form basis,
or even change colors while a form is displayed. The Colorizer extension works on
both the Windows Mobile and Palm OS platforms.

2 New integrated runtime engine capability! When you build your project, the
Satellite Forms runtime engine and launcher icon are merged together into an
integrated runtime engine EXE for Windows Mobile or PRC file for Palm OS. You
no longer need to bundle the main runtime engine executable with your app as a
separate file, because the launcher icon and runtime engine become one and the
same. See Creating and Assigning a launcher icon image for your application for
complete details.

3 New capability to display a splashscreen image while your app is loading! Now you
can have your own color image or logo displayed while the application loads,
instead of the traditional "Loading…" message. See Creating a splash screen for
full details.

4 New Tables Search script function makes it easy to find records in a table that
match a specific field value, with a minimum of scripting. This function carries out
a linear search by looping through the table to find the first record where the field
value matches the search term.

5 New Tables Lookup script function makes it simple to look up the value of one
field in the first record of a table where another field matches the search term. With

Satellite Forms 8
Development Guide

6

this new script function you could easily search a table for a customer ID value, and
obtain the corresponding customer's name, all with a single function call.

6 New Tables Backup script function allows you to copy a data table or tables to a
backup location at any time, to safeguard against data loss, or to share data with
another application. On the Palm OS platform, tables may be backed up to a
memory card, while on the Windows Mobile platform tables can be backed up to
any folder.

7 New GetAppName, GetAppCreator, and GetAppVersion script functions allow
you to query application info at runtime. This makes it easier to adapt scripts to
handle filenames that vary based on the app's creatorID, name, or version number.

8 New native barcode scanner control for Honeywell scanners on the Windows
Mobile platform. The HoneywellScan control enables you to integrate barcode
support into your app for scanners such as the Honeywell Dolphin 7600.

9 New native barcode scanner control for Datalogic scanners on the Windows Mobile
platform. The DatalogicScan control enables you to integrate barcode support into
your app for scanners such as the Datalogic Memor.

10 New FindFiles extension for the Windows Mobile and Palm OS platforms enables
you to search for files and folders, and get information about them such as file sizes
and dates. This extension makes it easy to generate a list of PDB files in the app's
folder, or a list of documents in the My Documents folder, etc..

11 New HyperLink control extension for Windows Mobile and Palm OS makes it
simple to add colored, underlined text links that respond to pen taps, just like a
hyperlink in a web browser. You can easily change the link text, color, font, and
location at runtime, and hide or show them as needed.

12 The ConnectionMgr extension for Windows Mobile has been enhanced to include
new functions that obtain a list of available connections on the device, and to
initiate a specific connection rather than just asking for the system to decide which
connection to use. This makes it easier to launch a GPRS connection instead of Wi-
Fi, for example.

13 When you build an application, any extensions used by the application, as well as
the runtime engine SDDI DLL for Windows Mobile, are copied into the application
target folder along with the other application and table files. This simplifies the app
deployment process by placing all of the app files together in the target folder.
When you use the Download App & Tables function from MobileApp Designer,
the Windows Mobile SDDI DLL is downloaded along with the other app files. If
you use the integrated runtime engine option, then your app folder will contain all
files needed to run your app, with no need to pre-install the Satellite Forms runtime
engine on the device.

14 New functions have been added to the SysUtils extension including an
SU_TapScreen function for Palm OS and Windows Mobile, and
SU_PlaySoundFile & SU_HideStartIcon functions for Windows Mobile.
SU_PlaySoundFile enables you to play WAV audio files.

15 Added a new CalcTextWidth function to Color Graphics extension to get width in
pixels of given string and font, for Palm OS and Windows Mobile.

What’s New
What's New in Satellite Forms Version 8

7

16 Added a new SetBarExtra function to the Symbol Integrated Scanner control, used
to control barcode scanning on Symbol and Janam barcode scanners. The
SetBarExtra function allows you to enable or disable extended barcode
symbologies that were not previously supported, including newer 2D symbologies
like Maxicode, QR Code, and Data Matrix.

17 Added a new CalcDistance function to the Windows Mobile GPS extension to
calculate the distance between two waypoints. The distance is returned in metres,
and the waypoint coordinates must be specified in decimal degress, the same
format returned by the GetPosLatitude and GetPosLongitude functions.

18 Added a new PocketPC target to the GoogleMaps sample project, demonstrating
how to integrate your Satellite Forms Windows Mobile app with the Google Maps
for Windows Mobile app to display locations, search businesses, and plot routes.

Bugs corrected in Satellite Forms 8:

1 The Windows Mobile runtime engine About dialog box now includes a standard
OK button on the dialog, to make it easier to dismiss the About screen on Windows
CE devices that do not display a standard OK button in the upper right corner like
Windows Mobile does.

2 Under certain circumstances, multiple sequential calls to the PromptCustom
function on a form could cause the app to crash with a stack overflow. This
problem has now been corrected. [SF-00369]

3 The Satellite Forms help manual documentation for the Tables BinarySearch
function has been improved to state that the RowNum variable will receive the
correct sort position for the record, even if a match is not found in the table. This
lets you know where a record should be located in the table in order to maintain the
correct sort order.

4 The ConnectionMgr extension for Windows Mobile has been redesigned so that it
no longer crashes upon load on Windows CE devices. The Windows Mobile
platform includes ConnectionMgr API functions, but Windows CE does not. A new
function lets you query the device to see if the ConnectionMgr is supported or not,
befopre attempting to call any connection functions.

5 The ShowImage control for Windows Mobile has been redesigned so that it no
longer crashes upon load on Windows CE devices. The Windows Mobile platform
includes image decoding API functions used by ShowImage, but Windows CE
does not. A new function lets you query the device to see if the extension is
supported or not, befopre attempting to call any display functions.

6 On Palm OS platform devices, the SDK runtime list of applications now responds
to the Enter key to select a desired app to run, instead of requiring a tap on the
screen.

7 Tables with more than 128 columns did not display properly in the listbox on
Windows Mobile. This is now fixed. [SF-00342]

8 A bug was corrected in the ShowImage control for Windows Mobile, where the
control sometimes required two taps before executing the OnClick action. [SF-
00390]

9 The SysUtils SU_LaunchAppAtTime function for Windows Mobile was updated to
properly cancel a pending event by passing a time value of 0.

Satellite Forms 8
Development Guide

8

10 The runtime engine for Windows Mobile would display table-related error
messages with an incorrect table filename, now fixed to show the correct table PDB
filename.

11 The SU_RegReadKey function for Windows Mobile in the SysUtils extension had
a memory leak, where the key value string memory was not properly released, now
fixed.

12 The FormatDate function of the Strings extension for Pocket PC was updated to
correctly handle the format string tokens “y” (day of the year), “q” (quarter), and
“w” (day of the week as number). The output now matches the Palm OS version.

Other changes in Satellite Forms 8:

1 Satellite Forms support for the abandoned PocketPC CDB handheld database
format has been removed. The CDB database format was abandoned by Microsoft
several years ago, dating back to the introduction of Windows Mobile 5. Satellite
Forms introduced support for the Palm PDB database format on the Windows
Mobile platform starting with SatForms version 7, and as of version 8 the PDB
database format is the only handheld database format supported by Satellite Forms
on both the Palm OS and Windows Mobile platforms.

What's New in Satellite Forms V7.2
Satellite Forms 7.2 introduced numerous new features and bug fixes from the 7.1
release, highlighted below.

New and enhanced features since 7.1:

1 New Serial Port extension for Pocket PC provides Satellite Forms applications the
ability to read & write serial port data on Pocket PC platforms (the Palm OS
platform serial port extension was already available). The Pocket PC Serial Port
extension supports a standard serial connection, raw SIR (serial over infrared),
infrared IrCOMM, and Bluetooth RFCOMM (see the extension help in MobileApp
Designer for details). The serial port sample project Terminal has been updated for
Pocket PC support also (it includes both Palm OS and Pocket PC build targets).

2 New ShowImage control for Pocket PC provides Satellite Forms Pocket PC
applications the ability to display common image files including JPG/GIF/PNG/
BMP and more on the current form. Images are stretched/shrunk to fit the specified
control rectangle. The ShowImage control can also act like a button control by
handling pen taps if desired. A sample project (and sample GIF file) is included to
demonstrate the control.

3 New ConnectionMgr extension is a plugin extension for Pocket PC that enables
your application to initiate a dialup connection to the Internet. This is useful for
TCPIP Winsock functions, HTTP, FTP, etc. on dialup TCPIP connections (eg.
modem, EDGE/GPRS, 1xRTT/EVDO, HSDPA, etc.). A disconnect function is also
provided.

4 New JanamUtils extension provides access to Janam XP20/XP30 hardware utility
functions like toggling the keypad backlight, vibrator, LED, 5V Power Out, and
Bluetooth power state.

What’s New
What's New in Satellite Forms V7.2

9

5 New WM5Camera extension is a plugin extension for Pocket PC that enables your
Windows Mobile 5 and higher applications to capture photos or videos on camera-
equipped devices. Photos are saved to .JPG files in the folder you specify. Videos
should be saved to .3GP files in order to be compatible with MMS standards among
mobile phones.

6 A new GetAppPath application property was added, which returns a string
containing the folder path in which the application resides on the Pocket PC device.
This is useful for any instance in which you need to know the path to a file, for
example the path to an image file used for the ShowImage control, or a BMP file
created by the InkHelper extension, or another application for the SysUtils
SU_LaunchApp function, etc. The use of the GetAppPath function to get the
application's folder path enables your code that relies on files paths to keep working
without modification even if your application is moved to a different folder (for
example to an external memory card folder). So, you would not need to hardcode a
folder path to files that are located in your app's folder or subfolders, instead you
can now get that path using the GetAppPath method.

7 New IH_FileToBinField function in the InkHelper extension allows you to import a
file (such as a BMP file) directly into a table binary field. This is useful when you
want to access a file created on the handheld in your server database, with the file
stored in a table field.

8 The Satellite Forms SDK runtime engine for Palm OS list of SDK applications now
responds to up/down cursor keys, and the select button, to ease the selection of the
SDK app to run.

9 The Pocket PC runtime engine now handles certain cursor key keypresses
differently than before. Previously, in both edit and paragraph controls, the up/
down keys would move the form to the previous or next record. Left/right would
move to the previous/next page (or record for single page forms). Home/end would
move to the first/last record. PgUp/PgDn had no effect. This is now changed to be
more intuitive. In a paragraph control, the default is now to move the cursor within
the paragraph instead of moving the form between records/pages. In an edit control
the up and PgUp keys move to the previous page/record, while down and PgDn
move to the next page/record. The left/right/home/end keys now move the cursor
within the text in the edit control.

Bugs corrected in Satellite Forms 7.2:

10 Using the Int() and Int64() operators to convert a Boolean value (true or false) to an
integer 0 or 1 was not successful on either the Palm OS or Pocket PC platforms.
The value remained a Boolean. This is now corrected to behave as expected
(converting a True value to 1 and a False value to 0). This bug was present all the
way back to SatForms 3.0 from 1999, perhaps even earlier! [SF-00361]

11 A change in the Satellite Forms Pocket PC runtime engine version 7.0.1 (055)
rendered some auto-repeating buttons inoperable. They would only work as
standard single-tap buttons and no longer auto-repeated. This has been corrected
[SF-00373].

12 Under certain conditions of filtered tables, the Pocket PC droplist control would not
apply a filter properly when the filter was a part of the droplist control's action, and
the droplist control was used as the snapshot for the filter criteria. This is
commonly used in a "filtering multiple droplists" scenario as described in the

Satellite Forms 8
Development Guide

10

Linking Droplist Controls article in the Tips & Tricks section of the Satellite Forms
guide. The Pocket PC droplist control has now been corrected to work properly in
this regard like the Palm OS droplist control. [SF-00375]

13 In conjunction with the development of the Pocket PC ShowImage control
extension (new in SatForms 7.2), we discovered that the Pocket PC runtime engine
was making numerous numerous unnecessary screen redraws, causing screen
flicker. These superfluous screen redraws are now suppressed. Another symptom of
this issue was that under rare circumstances, "phantom controls" could be displayed
on the form resulting a very jumbled display.

14 Support for reading and modifying the ReadOnly property of Pocket PC ink
controls at runtime was added, to behave like Palm OS ink controls in this regard.
You can now query and set the readonly property of the ink control at runtime. If
you set the ink control readonly property to False, then the user cannot modify or
clear the ink contents. [SF-00374]

15 The behaviour for the SF_DoButtonBehavior extension API on the Pocket PC
platform was improved, to match the behaviour and appearance of that API on the
Palm OS platform. You can notice this improved behaviour in the handling of pen
taps on the "erase ink" box in the Pocket PC ink control.

16 The Pocket PC Strings extension was completely rewritten to eliminate string
memory errors that were reported in previous versions. The previous string
memory errors could lead to application crashes.

17 The Pocket PC Slider and Color Slider SFX controls have been updated to now
move properly along with the rest of the control on the form when the form is
scrolled (for example, when you pop up the onscreen keyboard).

18 The Pocket PC Color Graphics extension has been updated to correct some bugs.
Problems corrected include (a) Drawing functions now work in color; and (b) a new
SetPaintKeyCode function signals your app when the screen is redrawn, allowing
you to repaint your graphics. The Color Table sample app now actually works as a
result of these changes.

19 The runtime engine has been updated to work around a Palm OS NVFS (non-
volatile file system) bug that would lead to "Cache_QueryRecord" errors in a
Satellite Forms application. This NVFS bug is more prevalent on Palm OS devices
that have Palm OS v 5.4.9 (for example the Palm TX or Janam XP30) compared to
earlier OS releases. The bug is that the OS could sometimes leave database records
marked as being "busy, in use" when they should not have been. This prevented the
Satellite Forms runtime engine from accessing the table records properly, resulting
in the error message. The runtime engine now attempts to clear the busy bit on
those records to avoid the error.

20 The MobileApp Designer now limits the maximum number of global and local
variables declared in an app to 255. Previously, MobileApp Designer would allow
up to 1000 vars to be declared, but the Palm OS and Pocket PC runtime engines
would only support up to 255 variables max. Increasing the declared variables over
that limit would cause the application to crash. Increasing this limit beyond 255
vars requires changes to MobileApp Designer, the runtime engines, and the
Satellite Forms conduit. This max var limit will be increased in a future version of
Satellite Forms.

What’s New
What's New in Satellite Forms V7.1

11

21 The Pocket PC ink control now properly ignores pen input when the ink control is
not visible. Previously, the ink control responded even when invisible.

22 A string formatting problem in the Satellite Forms conduit could lead to "Invalid
ArgsSize" and/or "Invalid ArgsSizePtr" error messages in the Palm OS Hotsync
log, instead of correctly logging table transfers, on newer versions of Hotsync.
This has now been corrected.

23 The RDKInst tool, as well as certain functions of the Satellite Forms HotSync
ActiveX control (and utility DLL) would not function correctly with Palm OS
HotSync 7.0.2, included with the Palm Desktop 6.2, and recommended by Palm for
use on Windows Vista PCs. The user management functions in the SatForms
utility DLL would no longer obtain the correct list of HotSync users, and as a result
the list of users shown in the RDKInst tool would be blank. The HotSync user
management functions in the SatForms utility DLL have been rewritten with the
help of an additional new SFUsrIns.dll that is installed to the \Windows\System32
folder along with the other conduit DLLs. The RDKInst, DLL and ActiveX
functions now work correctly with Palm Desktop 6.2 and HotSync 7.0.2, as well as
previous versions. An additional aspect of this change is that user management
changes are now effective immediately, and the HsCommitChanges/
HsAbandonChanges methods are now ignored.

24 Several of the Satellite Forms executables are now signed with an Authenticode
digital certificate to prevent "unknown application" popups on Windows Vista.
This includes the MobileApp Designer exe, RDKInst, CeRdkInst, and
SFConvertPDB.exe. Previously, just the Satellite Forms installer was signed.

25 The default installation directory for Satellite Forms is now C:\Satellite Forms 7\
instead of C:\Program Files\Satellite Forms 7\ in order to improve compatibility
with Windows Vista.

What's New in Satellite Forms V7.1
Satellite Forms 7.1 includes several important bug fixes, and also introduces
numerous exciting and powerful new features since the 7.0 release. This includes the
addition of new MobileApp Designer features, new script language keywords, new
extensions and sample projects. The documentation has also been improved, with key
sections updated and rewritten, and more than 40 new pages added. The new and
improved features are highlighted below.

New and enhanced features since 7.0:

1 New CommitData script method added to the Table object, used to commit cached
table data to storage on command. This Tables(TableName).CommitData method
replaces the Palm OS DmSyncDatabase extension, and the Pocket PC
CommitDatabase extension.

2 New NoAutoCommit table property and improved support of the Read-Only table
property on Pocket PC enables Pocket PC PDB applications to close faster. Support
for new NoAutoCommit property added to Mobile App Designer table editor, and
to the SFConvertPDB utility.

3 New feature in MobileApp Designer to automatically Create an application
shortcut (.Lnk) file when the Pocket PC application EXE is compiled. The shortcut

Satellite Forms 8
Development Guide

12

file is created in the AppPkg folder next to the EXE, and aids in application
deployment.

4 New SysUtils extension provides access to dozens of useful operating system
utility functions, including reading & writing to the Windows Mobile Registry and
Palm OS Preferences, obtaining the device unique ID and model information,
working with the system clipboard, parsing delimited text, and more.

5 New InkHelper extension provides utility functions for working with Satellite
Forms Ink fields. It enables you to convert the ink data such as signatures and
sketches into other formats including a BMP file, for easy integration with other
software, on-device printing, and more.

6 New GPS extension provides easy access to GPS data on Windows Mobile 5 and
higher devices, via the Windows Mobile GPS API.

7 New GoogleMaps extension for Palm OS enables your Satellite Forms application
to launch the Google Maps application to find a location, find a business, get
directions to a location, or get directions from a location.

8 New ScreenSize extension gives you information about the current screen size and
orientation on the PocketPC device.

9 New IntermecScan control extension enables your application to control the
integrated barcode scanner on many Intermec industrial Pocket PC devices.

10 Improved the compatibility of the Symbol Integrated Scanner control for Pocket PC
by preventing the control from crashing on non-Symbol units.

11 Improved the UnitechScan control by adding compatibility with the Unitech
PA550, PA650, and PA962 scanners.

12 Updated the SocketScan control for Palm OS to improve scanning speed and add
compatibility with new laser SD scan card models.

13 Improved the Aceeca IDVERIFI Bar Code extension to make it compatible with
the Aceeca Meazura scan wedge utility.

14 Improved the DynamicInputArea control to add support for controlling the DIA
keyboard input pinlet.

15 Added new restore workspace when project loaded option to the MobileApp
Designer preferences.

16 Added a Menu Sample project to demonstrate the use of custom application
menubars.

17 Added a PocketPC redistribution sample for the Advanced Calculator and Work
Order sample applications.

Documentation and feature changes since 7.0:

18 Revised the Deploying Pocket PC applications instructions to reflect improved
deployment procedures for Pocket PC PDB applications.

19 Added documentation for the SFConvertPDB Utility which was previously
documented in the Satellite Forms KnowledgeBase only.

20 Revised the Satellite Forms Synchronization for Pocket PC section with the
updated recommendations for Pocket PC PDB applications.

What’s New
What's New in Satellite Forms V7.1

13

21 Added or expanded descriptions for several Satellite Forms extensions.

22 Added dozens of new KnowledgeBase articles including both Known Issues and
How Tos.

23 Revised the Quick Tour chapter to build a Pocket PC version of the Customers To
Visit starter project, rather than a Palm OS version. The revised Quick Tour also
includes instructions on how to make a Palm OS version of the sample project.

24 Added a new platform target named simply “PocketPC”. The PocketPC platform
target is the recommended platform target to use for all PocketPC application
development, and is identical to the PocketPC PDB platform target except for the
simplified name. The older PocketPC platform targets are still included to provide
backward compatibility with existing projects, but for all new development we
recommend using just the “PocketPC” target.

25 Modified all sample projects to remove the PocketPC2003 build targets, and
replace the PocketPC PDB build targets with the new PocketPC build target.

26 Amalgamated the SatSyncPPC and SatSyncPCPDB sample desktop sync
applications into a single SatSyncPPC application. The revised SatSyncPPC
sample demonstrates how to synchronize PocketPC PDB databases using both the
Satellite Forms ActiveSync ActiveX Control method, and the non-ActiveX
CeRemote.dll method, and provides the option to select which method to use.

27 Modified the PocketPC runtime engine installer EXEs and CAB files so that the
main SatFormsRuntime_Install_RDK.exe (and CAB) contains support for PDB
databases only, while the new SatFormsRuntime_Install_RDK_CDB.exe (and
CAB) contains support for both PDBs and the obsolete CDB database format. The
SatFormsRuntime_Install_RDK_PPCPDB.exe (and CAB) was removed.

28 Added menu shortcuts to the SatSync and SatSyncPPC sample desktop sync
applications.

Bugs corrected in Satellite Forms 7.1:

29 A bug was detected in Pocket PC PDB record deletion behaviour, in which the data
from deleted records would still be stored in the PDB file after the record was
marked as deleted, instead of being properly removed. This has now been
corrected. [SF-00365]

30 A couple bugs were detected in the behaviour of the droplist control for both the
Palm OS and Pocket PC platforms, now corrected. [SF-00360, SF-00334]

31 MobileApp Designer exhibited a bug in the table editor, whereby new tables could
be initialized with incorrect table properties. On Pocket PC PDB applications, the
incorrect table properties could cause the table to not save data. Now corrected to
initialize new table properties correctly. [SF-00352]

32 A bug was uncovered in the way that MobileApp Designer packaged high density
bitmaps into the Palm OS application resource file, leading to application crashes
on the handheld. Now corrected.

33 Under certain circumstances (including script code that writes a value to a table
other than the form's linked table), the form's current table record pointer could get
"out of sync" when deleting a record using the Pocket PC PDB database format.
Now corrected. [SF-00347]

Satellite Forms 8
Development Guide

14

34 Updated the Pocket PC runtime engine to behave the same as the Palm OS when
the form’s current table record is filtered out of view. [SF-00340]

35 Sometimes Pocket PC keyboard input to the form could be ignored (with an error
beep) until the form was tapped at least once. This is now corrected. [SF-00351]

36 Sometimes the Pocket PC form close X/OK button could disappear, if you switched
away from the SatForms app to something else, and then switched back to the
SatForms app. This has now been corrected.

37 Form vertical scrollbars should automatically appear and remain on Pocket PC
applications that are running on display sizes that do not match the application
target (for example running a standard 240x320 application on a device with a
240x240 square screen.

38 Depending on the length of text, presence of embedded linefeeds, and so on, in
some circumstances prompt text and/or button text could be truncated in the
PromptCustom dialog box on Pocket PC devices. This is now corrected. [SF-
00278][SF-00355]

39 If a SatForms Pocket PC application was running and the user switched away to
another app (like the Today screen), and then tapped on the SatForms app's icon a
second time, the currently running app would correctly be brought to the
foreground. However, after the app was closed, it would immediately restart again.
This has now been corrected so that the app just gets brought to the foreground and
does not restart again after it is closed. [SF-00329]

40 A bug in the WinMobile5Square platform definition file prevented the use of
alternate shape radio buttons and checkboxes. This has been corrected.

41 A bug in all Windows Mobile/PocketPC platform definition files caused App
Designer to always change the default desktop database format to MDB for those
platform targets, when the project was loaded. This has been corrected. [SF-00327]

42 The SFConvertPDB utility used an incorrect (reversed) default CreatorID if the
CreatorID parameter was not supplied on the commandline. It was incorrectly
using FSMS and has been corrected to use SMSF as the default.

43 Implemented alternate-shape button control on PocketPC as a button with an
autoresizing caption unlike the nonresizing caption of the standard button control.
This matches the autoresizing caption behaviour of the altshape button on the Palm
OS platform.

44 Pocket PC PDB Tables().Binarysearch function returns an incorrect sort position
row number when the search value is not found. It returns a sort position row
number 1 higher than it should. Now fixed. [SF-00328]

45 Pocket PC PDB sort and binarysearch case sensitivity behaviour has been updated
to match the behaviour of the PalmOS runtime engine. [SF-00338]

46 Pocket PC PDB cannot filter records on numeric fields with width >= 10 digits,
resulting in incorrect filtered recordset. Cannot display/edit numeric table fields
with width >= 10 correctly, resulting in invalid data warnings. Now corrected to
display and filter numeric fields wider than 9 digits correctly. [SF-00339]

47 The CTRL-F hotkey in MobileApp Designer was incorrectly performing a Find
Next function, and has been corrected to perform the expected Find function.

What’s New
What's New in Satellite Forms V7.0

15

What's New in Satellite Forms V7.0
Satellite Forms 7.0 introduces several exciting and powerful new features, building on
the previous 6.1.1 release. This includes the addition of new control properties, new
script language keywords, new extensions and sample projects. Version 7.0 delivers
improved database performance and synchronization for the PocketPC platform, and
improved compiler speed in App Designer, plus many more improvements listed
below.

New and enhanced features since 6.1.1:

1. PocketPC applications can now use the more efficient Palm Database (PDB) format
for handheld devices tables, in addition to the Microsoft Pocket Access Compact
Database (CDB) format that was supported previously. The use of PalmDB format
tables on the PocketPC platform offers numerous advantages, including:

• PDB tables are significantly smaller than CDB tables because of their more
efficient structure. While CDB tables have a minimum size of 48KB even when
they are empty (128KB on PocketPC 2002 devices), the minimum size of a PDB
table is a mere 80 bytes.

• Using PDB tables on the PocketPC removes the reliance on the Microsoft
ActiveSync functions that convert desktop databases to/from the handheld CDB
databases, thus improving the speed and reliability of data synchronization. With
the changes Microsoft made to ActiveSync 4.x, handheld database
synchronization using CDB tables has become less reliable than it was with
ActiveSync 3.x, especially on Windows Mobile 5 powered devices. Using PDB
tables on the PocketPC avoids these reliability and performance issues.

• With the use of PDB tables on the PocketPC and PalmOS devices, the data tables
can be transferred between platforms with complete compatibility. You can use
the same PDB tables created on the desktop PC with both PocketPC and PalmOS
handhelds. You can transfer PDB tables directly between devices on different
platforms, using infrared beaming, Bluetooth, or SD memory cards.

• Compiling Satellite Forms applications for the PocketPC platform is quicker and
easier using PDB tables than it is with CDB tables, because there is no need to
generate the handheld tables on the connected device at compile time (this is how
CDB tables are created, which makes the compile process take longer). With the
PDB format, the data tables can be generated directly on the desktop PC without
needing a connected PocketPC device.

• The same application target can be used for PocketPC 2002 devices in addition to
PocketPC 2003, 2003SE, and Windows Mobile 5 for PocketPC devices. There is
no need to build a separate application target for PocketPC 2002 devices when
using PDB tables, as there was when using CDB tables. PocketPC 2002 CDB
tables are not compatible with PocketPC 2003 and later devices.

An existing PocketPC project may be changed in the Project Properties to use the
PalmDB format device databases instead of PocketPC DB. Also, a new PocketPC
PDB target platform has been added, which you can add to existing projects or use for
new projects, which uses the PalmDB table format by default.

The sample projects included with Satellite Forms 7.0 have been updated to include
new PocketPC PDB build targets, and to remove the PocketPC 2002 build targets.

Satellite Forms 8
Development Guide

16

See the new KnowledgeBase article 10033 "How To use PalmDB (PDB) tables in a
PocketPC application" for more information.

2. Satellite Forms applications can now utilize the expanded screen sizes available on
some PalmOS devices, such as the Palm Tungsten T3, T5, LifeDrive, and TX. A new
DynamicInputArea SFX control is provided that enables you to control the behaviour
of the dynamic input area (DIA, also known as soft Graffiti area or collapsible Graffiti
area) and screen rotation features. A sample project called DynamicInputArea is
provided to demonstrate this capability. As well, new platform targets called Palm
Tall and Palm Wide have been added, to aid in the creation of applications that are
designed specifically to use the taller or wider screen sizes. See the new
KnowledgeBase article 10036 "How To support Expandable Screens in PalmOS
applications" for more information.

3. PalmOS applications can now support high density (hi res) bitmaps and icons.
Most PalmOS 5.x devices support high density displays that offer 4 times the
resolution of the standard 160x160 pixel displays on older PalmOS devices. Your
SatForms applications can now take advantage of this by including higher quality 8-
bit and 16-bit high density (HD) bitmaps, and high density launcher icons.

To add an 8-bit HD bitmap, name the bitmap with the -8-HD.bmp suffix and include it
in your Images folder alongside the standard density bitmaps. To add a 16-bit HD
bitmap, name the bitmap with the -16-HD.bmp suffix.

New large and small HD icon templates have also been provided.

Note that HD images take 4 times the number of pixels as standard density images,
thus you will need to be more careful to not exceed the 64KB maximum size limit of a
bitmap family.

See the new KnowledgeBase articles 10034 "How To use High Density Bitmaps in
PalmOS applications" and 10035 "How To use High Density Icons for your PalmOS
applications" for more information.

4. A new UnitechScan extension has been added to control the integrated barcode
scanner on Unitech PocketPC scanner devices, such as the PA-950 model. See the
sample application "UnitechScan" for more information.

5. A new LaunchURL extension for PalmOS and PocketPC has been added as a
standard Satellite Forms extension. See the Satellite Forms Solutions Guide topic
"Developer Tools | Satellite Forms Extensions | Network & Email Tools |
LaunchURL" for more information.

6. A new LaunchReturn extension for PalmOS 5.x devices has been added as a
standard Satellite Forms extension. See the Satellite Forms Solutions Guide topic
"Developer Tools | Satellite Forms Extensions | General Purpose | LaunchReturn" for
more information.

7. New .SetPosition and .GetPosition methods have been added for Satellite Forms
form controls, enabling you to determine and modify the location and size of controls
on the form at runtime. This capability complements the new DynamicInputArea
support on PalmOS devices, and is available on both the PalmOS and PocketPC
platforms. The x, y, width, and height of controls can be queried and modified at
runtime. See the new KnowledgeBase article 10037 "How To Move and Resize
Controls at Runtime" for more information. A sample project titled
"DynamicInputArea" is provided.

What’s New
What's New in Satellite Forms V7.0

17

As a result of this addition, the SetPosition/GetPosition/SetMinMax functions of the
Slider and Color Slider controls have been renamed to SldSetPosition/SldGetPosition/
SldSetMinMax to prevent function name conflicts. You will need to use the Find &
Replace function to change these functions in your applications in order to make them
compile properly in SatForms 7. See the KnowledgeBase article 10040 "Error C016:
Method "Controls.SetPosition" takes 4 param(s) : 1 specified" for the full details.
Note that this also affects users of the third party LSListBox extension.

8. New .Popup method has been added for droplist controls, to pop up the droplist list
via script command, and for edit & paragraph controls to pop up an automatic
keyboard for the edit/paragraph control if one was defined for that control at design
time.

9. New .Font method has been added for Satellite Forms form controls, enabling you
to determine and modify the font used by a control at runtime. This capability is
available on both the PalmOS and PocketPC platforms. See the new KnowledgeBase
article 10041 "How To Change Control Fonts at Runtime" for more information.

10. SFConvertPDB is a new commandline utility included with Satellite Forms 7.0
that enables you to convert database files from PDB format to/from DBF or MDB
format, on the desktop PC. It does not require a Palm HotSync or Microsoft
ActiveSync session to be active, as it runs entirely on the PC. This provides a
handheld-platform-independent PC based mechanism to convert data to & from PDB
files, for use with Satellite Forms applications on the PalmOS platform and on the
PocketPC platform when using PalmDB database tables. SFConvertPDB is intended
for use both as a database conversion component of a synchronization system, and
also as a developer data conversion utility. See the new KnowledgeBase article 10038
"How To use the SFConvertPDB utility" for the complete details.

11. A new sample synchronization tool and developer utility called SatSyncPPCPDB
is included. SatSyncPPCPDB demonstrates how to send and receive data between the
desktop PC and PocketPC handheld, using the Satellite Forms CeRemote.dll and
SFConvertPDB utility. This sample is designed for PocketPC applications using
PalmDB (PDB) format databases on the handheld. SatSyncPPCPDB is supplied in
Visual Basic 6 source code form, and also a compiled setup package ready to use. See
the new KnowledgeBase article 10039 "How To use SatSyncPPCPDB to sync
PocketPC data" for the full details.

12. A new BatteryInfo extension for PalmOS and PocketPC has been added as a
standard Satellite Forms extension. See the sample project "Battery Info" for more
information. The source code for this extension is also provided in the
\Samples\Extensions\BatteryInfo folder.

13. Bachmann PrintBoy extensions and sample projects have been added to Satellite
Forms. This includes the HTML Edition extension for PocketPC, and the Basic,
Reports, and HTML Editions for PalmOS.

14 A new FormNavHelper extension for PalmOS 5.x has been added as a standard
Satellite Forms extension. See the sample project "FormNavHelper" for more
information.

15 CeRemote.lib and CeRemoteAPI.h library files have bee added to document the
public functions of the CeRemote.dll for transferring files between the desktop PC and
PocketPC. The use of the CeRemote.dll for PocketPC synchronization is
demonstrated in the new SatSyncPPCPDB sample project/tool. For more

Satellite Forms 8
Development Guide

18

information, see the KnowledgeBase article 10039 "How To use SatSyncPPCPDB to
sync PocketPC data".

16. The performance of the application compiler in App Designer has been
dramatically improved for complex applications that make extensive use of global
functions and subroutines, reducing the amount of time it takes to compile your
project. Some beta testers have reported speed gains in excess of 18000% compared
to Satellite Forms 6.x!

Bugs corrected in Satellite Forms 7.0

17. The Deliveries sample project was updated to correctly load the embedded images
for the customer maps and delivery items. This demonstrates the HSBM method of
embedding images into databases (see the KnowledgeBase article 10010 "How To use
color bitmaps in your application" for more information about the HSBM bitmap
method).

18. The Deliveries sample synchronization app now includes support for both PalmOS
and PocketPC synchronization (using the SF ActiveSync OCX and CDB files).

19. The PDF toolbar icon in App Designer to open the Satellite Forms manual in PDF
format was opening the Satellite Forms Solutions Guide by mistake: this has now
been corrected.

20. Previously, App Designer would complain about missing DLL files if you opened
a project that included PocketPC build targets, but your development PC did not have
Microsoft ActiveSync installed. This warning message was harmless but confusing,
and has been removed.

21. An error with the Round function of the Math extension for PocketPC has been
corrected.

22. The default height of a droplist control in App Designer for PocketPC targets has
been increased from 17 to 19 pixels, to match the actual height of the droplist control
on the PocketPC device.

Satellite Forms Overview
Introducing Satellite Forms

19

Chapter 2
Satellite Forms Overview

Read this chapter to learn about:

• Overview of Satellite Forms

• Major components of Satellite Forms

• Basic information on relational databases and Satellite Forms

• Tables and how they are used in Satellite Forms

• Forms and how they are used in Satellite Forms

• Controls and how they are used in Satellite Forms

• Scripting in Satellite Forms

• Extensions in Satellite Forms

• Targets and Platforms in Satellite Forms

Introducing Satellite Forms
Satellite Forms™ is an integrated software development environment (IDE) that
makes it easy to create custom applications for Palm OS and Windows Mobile/Pocket
PC devices. Satellite Forms allows you to create usable, real-world applications
without writing a single line of code. Even more sophisticated applications require
minimal scripting or coding to implement.

Using Satellite Forms, you can create mobile applications that access valuable
information from company databases – for example, customer orders or contact
information. You can design applications to be read-only or to allow users to add or
update data that can then be transferred back to a company database.

A desktop application you create directs how Satellite Forms applications and data are
processed by Microsoft ActiveSync for Pocket PC devices, or Palm HotSync Manager
for Palm OS devices. This means you have complete control over downloading data to
the device and reintegrating the data back into a database.

You can use Satellite Forms to create applications for many tasks, including the
following:

• Sales Automation

• Marketing Research

Satellite Forms 8
Development Guide

20

• Patient Records

• Inventory control

• Pharmaceutical Detailing

• Inspections

• Collections

• Repair Service Reports

The Satellite Forms applications you create provide several benefits to your end users
and to your company or client. They make important and useful database information
portable and easy to access. They make data entry and verification fast and accurate.
They reduce costs by cutting down on paperwork and eliminating the need for re-
keying information.

Major components of Satellite Forms
Satellite Forms has four main components:

• MobileApp Designer: The integrated development environment (IDE) you use
to design the forms and tables of your applications. MobileApp Designer allows
you to create applications with multiple forms and tables.

• The Satellite Forms PalmOS Conduit: Manages the transfer of data to and from
PalmOS handheld devices and the desktop. (Not applicable to the Pocket PC
platform.)

• The Satellite Forms ActiveX controls: Work with HotSync or ActiveSync
technology to simplify integration with database applications.

• The Satellite Forms Engines: Run Satellite Forms applications on PalmOS and
Pocket PC handhelds.

Satellite Forms uses the industry standard dBase™ and Microsoft® Access™ formats
to transfer information between desktop and handheld devices, making the
applications you create using Satellite Forms compatible with the leading database
products.

Licensing Satellite Forms
Satellite Forms is licensed on a per-developer (individual person) basis. A single
developer may install and use Satellite Forms on up to two (2) PCs at one time (for
example one desktop PC and one laptop), but each individual developer requires a
separate license. The handheld applications and conduits you create with Satellite
Forms are royalty-free.

You can utilize Satellite Forms to create an unlimited number of applications,
distributed to an unlimited number of handheld users, with no royalty fees.

You are free to distribute the runtime components and RDK engine (SF80RDK.prc),
SDDI plug-ins, SF Runtime Installer for Pocket PC and its content, including the
SatForms80.exe and DvSDDI_PPCPDB.dll, and extensions for Satellite Forms
applications that you develop with MobileApp Designer.

Satellite Forms Overview
Relational databases and Satellite Forms

21

The SDK engine (SF80SDK.prc) is not redistributable. You are not permitted to
install the Satellite Forms development package on end-user computers (unless you
purchase a developer license for each end user), but you are permitted to install/deploy
the runtime components.

• Email: Sales@SatelliteForms.net

• Other contact information: www.SatelliteForms.net

Relational databases and Satellite Forms
One of the most common methods of organizing data on computers is the relational
database. Database management systems (DBMS) such as Microsoft Access are
applications that use the relational model to store and retrieve information.

With any DBMS, data is stored and presented to the user using a distinct method. Data
is stored in one type of object, usually called a table. Data is displayed in another type
of object, usually called a form.

Any application that uses the relational model – Satellite Forms included – consists of
a collection of tables. The forms are the view windows or screens that present the data
to users. Forms display information through controls placed and configured when the
form is created. Satellite Forms applications use tables, forms, and controls in much
the same way as any DBMS.

How Satellite Forms uses tables
Like other relational databases, Satellite Forms uses tables to store and retrieve
information. An application created with MobileApp Designer can use one or many
tables.

The following figure shows a sample Clients table:

Figure 2.1 Clients table

www.SatelliteForms.net
sales@satelliteforms.net

Satellite Forms 8
Development Guide

22

The table has four client records, each with seven fields, only five of which are shown
in the example: CLIENTNAME, ADDRESS1, ADDRESS2, CITY, STATE,
ZIPCODE, and PHONENUM.

This example illustrates several important table requirements:

• Each table in a Satellite Forms application must have a unique name.

• Each table has rows and columns – that is, records and fields.

• Each field is labeled with a field name describing the information stored in the
field (for example, CLIENTNAME).

• Each field is assigned a specific data type that determines the characters and
format the field accepts. For example, only numbers can be stored in a numeric
field.

Satellite Forms tables support the following field data types:

• Character: Accepts any printable character: letters, numbers, and symbols.

• Numeric: Accepts numbers only, such as prices, inventory quantities, ID
numbers, and so on. Note that phone numbers, zip codes, and numbers
representing dates and times should not be entered into numeric fields. Use the
Character data type for phone numbers and zip codes. Dates and times have their
own corresponding data types.

• True/False: Accepts only T for true or F for false. Use for Boolean data.

• Date: Accepts only date information in MM/DD/YYYY format in MobileApp
Designer. On the handheld device, dates are displayed and entered in a country–
specific format according to the Preferences settings on the handheld device.

• Time: Accepts only time information in the HH:MM am/pm format in
MobileApp Designer. On the handheld, times are displayed and entered in a
country–specific format according to the Preferences settings on the handheld
device.

• Binary: Accepts input from an Ink control for signatures, drawings, and so on.
This data appears on the desktop computer as an OLE object.

• Time Stamp: Accepts an eight-bit integer used to establish compatibility with
imported Oracle Lite tables.

In the Clients table, as shown in Figure 2.1 on page 21, all fields are defined to accept
Character data. The ZIPCODE and PHONENUM fields are not numeric because they
contain dashes, parentheses, or both.

In the Clients table, each record contains information for an individual company. Each
field contains a particular type of data, for example, a company name or address. For
an individual company, a particular field may be empty. In the Clients table, B&M
Shoes has no information in the field ADDRESS2 because there is no suite, room, or
floor number for that company.

How Satellite Forms uses forms
Satellite Forms uses forms to display information. The forms you create using
MobileApp Designer become the screens that appear on the handheld device when an

Satellite Forms Overview
How Satellite Forms uses forms

23

application is running. Just as each application can use multiple tables, each
application can also have multiple forms.

The information a form presents may be contained in the form itself as static text, as in
the case with a simple Help form, or can be retrieved from a database table. Each form
you create using MobileApp Designer can have a table linked to it. When you link a
form to a table, the form’s controls display the current record of that table. For
example, a form linked to the Clients table, as shown in Figure 2.1 on page 21, might
look like the one shown in the following figure:

Figure 2.2 Clients to Visit form

This Clients To Visit form shows the contents of the current record, Jack’s Jokes,
from the Clients table.

Each form can only be linked to one table. The form in Figure 2.2 is linked to the
Clients table. Each item on this form is a control that displays static information or the
contents of a particular field of the current record, or starts an action when you select
it.

On the Clients to Visit form, the title is a static Text control. The buttons labeled Next
and Prev are controls that perform an action, displaying the next or previous customer
in the Clients table. The lines displaying information are controls linked to the data in
the current record of the Clients table. Each of these controls has as its data source a

Satellite Forms 8
Development Guide

24

specific field in the table. The following figure shows the Clients to Visit form, the
Clients table, and the links between the form’s controls and the table data sources:

Figure 2.3 Clients to Visit form and current record of linked Clients table

When a form is initially displayed, or a new record is displayed, the controls are
loaded with the data from their respective data sources. As you use the form and edit
the data, changes are saved to the linked table only when you move to another record
or leave the form.

Controls used in Satellite Forms
The controls in Satellite Forms determine what is displayed and what actions can be
performed on any form created with MobileApp Designer. The types of controls
available are described below:

• Title control: Displays a title across the top of the form, as shown in Figure 2.2 on
page 23.

Satellite Forms Overview
Controls used in Satellite Forms

25

• Text control: Shows static text – that is, text that does not change when the
application runs.

• Edit control: Displays and allows editing of the contents of a particular field of
the current record of the form’s linked table. The controls displaying the client
information on Jack’s Jokes, as shown in Figure 2.2 on page 23, are Edit controls.
Each Edit control is bound to a field in the form’s linked table. Edit controls were
called Input Field controls in previous versions of Satellite Forms.

• Paragraph control: Like an Edit control, but displays multiple lines of
information. Use Paragraph controls for entering or displaying notes or other
lengthy, unformatted text.

• Check Box control: Represents an item that can be checked off. For example,
you could use Check Box controls to create a form that surveys how a customer
uses a software product – for entertainment, business, school, work, and so on.
The customer checks any or all choices that apply. The Check Box control can
only be bound to a True/False field in the form’s linked table.

• Radio Button control: Used like the Check Box control, but only one choice can
be selected within a group of Radio Button controls that are bound to the same
field in the form’s linked table. Use Radio Button controls for selections where
multiple choices are not appropriate.

• Button control: Executes an action or a script, as illustrated by the Next and Prev
buttons.

• List Box control: Displays the contents of a form’s linked table in a tabular
format. The control can display some or all of the table’s fields. Use this control to
display more than one record at a time or to group and display selected fields. For
example, you could set up a List Box control to display all the customer names
and telephone numbers from the Clients table at one time and not have to move
from record to record to find the desired information.

• Drop List control: Displays a drop-down list, like a Windows combo box, from
which the user can select an item. The contents of the Drop List control, as with
the Lookup control, are derived from a lookup table, not the form’s linked table.

• Lookup control: Displays data from a lookup table. Use this control to display
information from a form’s linked table in a more useful format. For example, you
can display customers identified by account numbers by name, rather than account
number.

• Ink control: Allows freehand drawing or signatures, which appear on the desktop
computer or server as OLE objects. For example, use this control to record a
signature on screen. The Ink control can only be bound to a Binary field in the
form’s linked table.

• Bitmap control: Displays a static bitmap. Use this control to place a company
logo on a form or overlay an illustration on a Button control. You can also use it as
a background to create more interesting and attractive forms.

• Graffiti Shift Indicator control: Places an indicator graphic on the handheld
device’s screen that shows the shift state – lowercase, uppercase, or caps lock – of
the Graffiti handwriting recognizer.

Note This control is not available for Pocket PC applications.

Satellite Forms 8
Development Guide

26

• Auto Stamp control: Automatically enters a date or time stamp in a field. This
control is invisible to the user.

• SFX Custom control: Some SFX Custom controls can be bound to a table field.
The Slider control provided with Satellite Forms is an example of an SFX Custom
control.

Multiple forms and pages
In Satellite Forms, each form can have only one linked table. When you need to use
more than one table in an application, you must create a separate form to link to each
table or use the scripting language to provide custom functionality.

When using multiple forms, a Button or other control that provides actions makes it
possible to jump from the current form to the next or previous form. This allows an
application created using MobileApp Designer to access information stored in as
many tables as necessary. For more details on using multiple tables and forms, see
Jump to Multiple Forms options on page 180.

A form can also have more than one page if the information to be displayed is more
than one handheld computer screen can hold. A multi-page form is still a single form.
All the pages of the form display data from the same record. An example of a form
with more than one page is shown in the following figure:

Figure 2.4 Form with multiple pages

Tip Multiple single-page forms are easier to design and maintain than a single
multiple-page form, especially if you use scripting. To the user, there is no apparent
difference between the two approaches, so we recommend using multiple single-page
forms for simpler design and maintenance.

Satellite Forms Overview
Navigating between pages and records

27

Navigating between pages and records
The Up and Down scroll buttons on handheld devices move between records in a
table. If a form has more than one page, clicking the Up or Down button moves
between pages as well. If you click the Up button while viewing the first page on a
form, the handheld device displays to the previous record in the form’s linked table. If
you click the Down button while viewing the first page on a form, the handheld device
displays the next page on the form. While viewing the last page on a form, clicking the
Down button displays the next record in the form’s linked table. Clicking the Down
button while viewing the last page of a form which is displaying the last record in the
form’s linked table can create a new record if the user permissions are set to allow it.

Scripting
Satellite Forms scripts allow you to add custom functionality of your handheld
applications. The Satellite Forms scripting language uses syntax similar to Microsoft
Visual Basic®. Scripting complements built-in Satellite Forms features with local and
global variables, mathematical operations, conditional logic, loops, and user-interface
functions. For example, with Satellite Forms scripting, you can:

• Perform arithmetic calculations and logical operations on data.

• Add business logic and complex validation to a form.

• Access the methods and properties of Satellite Forms objects.

• Manage data in tables and perform functions like cascade updates and cascade
deletes.

• Create template applications that dynamically change based on user input.

For more information and examples on how to use the Satellite Forms scripting
language, see Satellite Forms Scripting Language Reference, on page 257.

Extensions: SFX plug-ins and SFX Custom controls
The Satellite Forms Application Programming Interface (API) allows you to expand
the capabilities of Satellite Forms with extensions called SFX plug-ins and SFX
Custom controls. SFX plug-ins are non-visual, functional enhancements for your
applications that expand the script language. SFX Custom controls are visual controls
you can place on forms, and can also expand the script language. You can write your
own extensions or use extensions written by others. For example, Satellite Forms
provides several extensions, including an SFX plug-in called Square Root and an SFX
Custom control called Slider. You can add these extensions to your applications or
create new ones of your own design. The SFX plug-in and control extensions included
with Satellite Forms, on page 268 lists many of the extensions included with Satellite
Forms, many of which also have a sample project to demonstrate their features.

A categorized and searchable database of available Satellite Forms extensions is
included in the Satellite Forms Solutions Guide in the \Satellite Forms 8\Doc folder,
and is also available on the http://www.satelliteforms.net/ website.

http://www.satelliteforms.net/solutions.htm

Satellite Forms 8
Development Guide

28

Extensions are programs written in the C language – using Metrowerks CodeWarrior,
for example – that exchange data with the Satellite Forms Engine on the handheld
device. You can use extensions to manipulate data, perform complex business logic,
create custom controls, display dialog boxes, and handle many other functions. For
example, you can use extensions to:

• Extend the Satellite Forms scripting language with libraries of financial and
statistical functions.

• Create new user-interface objects.

• Build drivers for devices such as barcode scanners, portable printers, and pagers.

• Add business logic and complex validation to a form.

For more information and examples on how to incorporate existing SFX plug-ins and
SFX Custom controls into your applications, see Adding extensions to Satellite Forms
on page 188. For more information on creating your own SFX plug-ins and SFX
Custom controls, see Satellite Forms API Reference, on page 467.

Targets and Platforms
Satellite Forms has the ability to separate a single project into separate classifications
called "Targets". A "Target" in MobileApp Designer is the current project's code and
structure as applied towards a specific platform. This means that one application can
be developed for both Palm OS and Pocket PC platforms. And, all the code will be
saved in one project file. To add a new target to a project go to the "Build" menu and
select "Targets".

All tables, forms, and controls are attached to the central project and can be shared
between all the targets or excluded from specific targets. In order to exclude a specific
form or control simply delete that control from within the desired target. If this object
still exists in other targets it will appear greyed out in the "Project Contents"
workspace, meaning it is no longer included in this target.

Properties can also be individually shared or excluded between projects as well. In the
"Property Space" each checked checkbox on the left side of the window means that
corresponding property is being shared amongst all targets. If you wish to modify a
property for one target but not have that value transmitted to the other targets you
must uncheck that property in the aforementioned target.

Global scripts are also separated into Shared and Private sections. Shared global
scripts are available to all of the targets in a project, while Private global scripts are
only available to the current target. This enables you to have different platform-
specific scripts in each target, referenced by the same function or subroutine name.

With multiple target support, it’s easy to take a project designed for one platform, and
extend that application by building it for both the PalmOS and PocketPC platforms.

Installing Satellite Forms
System requirements

29

Chapter 3
Installing Satellite Forms

This chapter explains how to install Satellite Forms.

System requirements
The following sections define the hardware and software requirements for the Satellite
Forms development computer and for the handheld devices on which you can install
Satellite Forms applications.

Satellite Forms development computer
The following lists describes the recommended hardware and software minimum
requirements for the computer on which the Satellite Forms development environment
is installed.

Hardware requirements
The following list describes the minimum hardware requirements for the computer on
which you develop Satellite Forms applications:

• PC with a Pentium-class processor, 200 MHz or faster

• 64 MB RAM

• 50 MB available disk space

Operating system software requirements
Satellite Forms has been tested with the following operating systems:

• Microsoft Windows Vista Business edition

• Microsoft Windows XP Professional edition

• Microsoft Windows 2000 Professional edition

• Microsoft Windows NT 4.0 Workstation with SP 6

• Windows ME

• Windows 98 Second Edition

Satellite Forms 8
Development Guide

30

Additional requirements
Satellite Forms requires the following additional software and configuration:

• To develop PalmOS applications: Palm HotSync version 3.01 or later.

HotSync is installed with the Palm Desktop. The Palm Desktop software should be
supplied with your Palm OS device, or may be downoaded from the device maker’s
website.

To develop Windows Mobile/Pocket PC applications: Microsoft ActiveSync
version 3.5 or later, or Windows Mobile Device Center for Windows Vista.

You can download a free copy of ActiveSync or Windows Mobile Device Center
from:

www.microsoft.com/windowsmobile/activesync/default.mspx

• MDAC version 2.6, SP1

The Microsoft® Data Access Components (MDAC) is software that Satellite Forms
uses as the interface to its transfer tables. Earlier versions of MDAC are installed
with Windows 2000 and Access 2000, but version 2.6 or higher is recommended
for Satellite Forms.

You do not need to update or install MDAC if any of the following conditions are
true:

• You are using Windows XP or Access 2002

• You are using Access 97, in which case you can only use DBF format

You need to update or install MDAC if all of the following are true:

• You are using Microsoft Windows 98, Windows NT4.x, or Windows 2000

• You are using Microsoft Access 2000

If you update/install MDAC 2.6, you also need to update the Microsoft Jet 4.0
engine. For information, see www.microsoft.com/data/download.htm#Jet4SP3info

Note Installing MDAC may break other applications on the desktop computer. Please
refer to the Microsoft articles listed below for details:

More information about MDAC can be found at www.microsoft.com/data

Useful articles on MDAC can be found on the following Microsoft sites:

support.microsoft.com/support/kb/articles/Q239/1/14.ASP

support.microsoft.com/support/kb/articles/Q230/1/25.ASP

Satellite Forms runtime engine
The following list describes the recommended hardware and software minimum
requirements for the handheld devices on which the Satellite Forms runtime engine is
installed.

• Palm OS devices

– Palm OS 3.5 or later

http://www.microsoft.com/windowsmobile/activesync/default.mspx
http://www.microsoft.com/data/download.htm#Jet4SP3info
http://www.microsoft.com/data
http://support.microsoft.com/support/kb/articles/Q239/1/14.ASP
http://support.microsoft.com/support/kb/articles/Q230/1/25.ASP

Installing Satellite Forms
Upgrading from previous releases

31

– 1 MB available main memory

– HotSync 3.01 or higher

• Windows Mobile/Pocket PC devices, including these OS versions:

– Pocket PC 2002, Windows Mobile/Pocket PC 2003, Windows Mobile/Pocket
PC 2003 SE, Windows Mobile 5 for Pocket PC (including Phone Edition),
Windows Mobile 6.x Classic, Windows Mobile 6.x Professional

– Note that Windows Mobile “Standard” editions do not support a touchscreen,
and are not compatible with Satellite Forms.

– 10 MB available main memory

– ActiveSync 3.5 or higher, or Windows Mobile Device Center

Upgrading from previous releases
If you are upgrading from an earlier version of Satellite Forms, you do not need to
uninstall the previous version from your development PC. Satellite Forms 8 will co-
exist with older versions of SatForms on the same PC. However, because Palm
Hotsync only supports a single conduit to be registered for each unique creatorID, the
conduit used by MobileApp Designer for the Download/Upload function will only be
active for one specific version of SatForms. When the installation is complete,
Hotsync will prompt you to select which conduit you wish to use: the SatForms 8.0
conduit, or the older version. Choose the newer SatForms 8 conduit in order to be
able to use the Download/Upload feature from Satellite Forms 8 MobileApp Designer.
Note that if you are installing SatForms 8 to a PC that already has an older version,
make sure that you install it to a different folder: the old and new versions must not be
installed in the same folder.

You do need to complete the following step before installing the new version:

• Uninstall the old Satellite Forms Engine for PocketPC from your handheld. For
instructions, see Uninstall the Satellite Forms Engine from a Pocket PC device on
page 37.

Installation overview
Installing Satellite Forms is a three-step process:

1 Install MobileApp Designer on your development computer

2 Install the Satellite Forms engine on your handheld device

3 Download and test a Satellite Forms application on your handheld device

Preparing for installation Before installing MobileApp Designer, verify the following items:

• You have the license key. The license key was emailed to you when you
purchased Satellite Forms.

• Your development computer meets the system requirements listed under Satellite
Forms development computer on page 29.

Satellite Forms 8
Development Guide

32

• The required handheld device software is installed:

• Palm OS devices: Install Palm Desktop

• Pocket PC devices: Install Microsoft ActiveSync

Note If Microsoft ActiveSync or the Palm Desktop and HotSync Manager are not
installed on your development computer before you install Satellite Forms, an error
message appears if you attempt to install Satellite Forms.

Installing Satellite Forms
on your computer

Procedure Install Satellite Forms on your development computer

1 Run the Satellite Forms Setup program.

• The Setup program normally runs automatically when you insert the CD into
your CD-ROM drive. If it does not run automatically, browse to the
SF8_Install.exe file on the CD and double-click it. If you downloaded the
Satellite Forms installation file, browse to the folder into which you
downloaded the file SF8_Install.exe, and double-click it to start the
installation.

2 Follow the prompts to complete the installation.

• When the Setup Type dialog box appears, choose an installation type.

You can choose to install all program features or specify a custom installation by
following the installation wizard prompts. You can select a different installation
folder using the Custom option.

Installing the Satellite Forms engine on handheld devices
The Satellite Forms runtime engine is the program on your handheld device that runs
the applications you create with MobileApp Designer. After you have installed
Satellite Forms development tools, you also need to install the runtime engine(s) on
your handheld devices. There are four engines:

• Pocket PC SDK

• Pocket PC RDK

• Palm OS SDK

• Palm OS RDK

Generally, you would use the SDK engine during development and use the RDK
engine for final testing and when you distribute your application to users. The SDK
(software development kit) runtime engine displays the Satellite Forms icon on the
handheld device, while the RDK (redistribution kit) runtime engine is hidden on the
handheld so that only your own application icon is displayed.

Note Starting with Satellite Forms 8, a new integrated runtime engine feature is now
available. This combines the RDK runtime engine with your application icon into a
single integrated runtime file, and you do not need to install the RDK runtime engine
separately. For development purposes, you still need to install the SDK runtime, but
for deployment you can use the integrated runtime engine.

Note The Trial version of Satellite Forms does not include the RDK runtime engines;
the Trial version include the SDK runtime engines only.

Installing Satellite Forms
Installation overview

33

Note If a previous version of a Satellite Forms Engine is installed on your handheld
device, you must delete the old engine before installing the new one. For instructions,
see Uninstall the Satellite Forms Engine from a Palm OS device on page 37 and/or
Uninstall the Satellite Forms Engine from a Pocket PC device on page 37.

Installing the Satellite
Forms Pocket PC SDK or

RDK engine

Procedure Install the Pocket PC SDK or RDK engine

1 Click the Start button on the Windows Taskbar, point to Programs >
Satellite Forms 8.0 > Runtime > Pocket PC, and click RDK Runtime Installer
or SDK Runtime Installer.

2 Follow the prompts to complete the installation.

The SDK/RDK Runtime Installer dialog box appears, similar to the one shown in
the following figure:

Installing the Satellite
Forms Palm OS SDK or

RDK engine

Use the SDK engine during development of your applications. When you distribute
your application to your users, or for final testing, use the integrated RDK engine.

Procedure Install the Satellite Forms SDK or RDK engine on a Palm OS device

1 Start HotSync Manager if it is not already running.

• Click the Start button on the Windows Taskbar, point to Programs > Palm
Desktop, and then click HotSync Manager.

2 Click the Start button on the Windows Taskbar, point to Programs >
Satellite Forms 8.0 > Runtime > Palm and click the appropriate command for the
program you want to install:

• Install SDK Engine

• Install RDK Engine

The SDK/RDK Installer dialog box appears, similar to the one shown in the
following figure:

Satellite Forms 8
Development Guide

34

Figure 3.1 SDK Installer dialog box

3 Select the User Name of the handheld device on which you want to install the SDK
or RDK, and then click the Install... button.

The Waiting for HotSync dialog box appears, as shown in the following figure:

Figure 3.2 Waiting for HotSync dialog box

4 Place the handheld in its cradle and press the HotSync button.

When the HotSync is complete, a confirmation message appears, as shown in the
following figure. If this message does not appear or if an error message is
displayed, repeat the Satellite Forms Engine install procedure.

Figure 3.3 Palm OS engine setup successful message box

5 When the HotSync session is complete, remove the handheld device from the
cradle and tap Applications.

The Satellite Forms icon appears on the handheld device’s application picker
screen. If the Satellite Forms icon does not appear, repeat the Satellite Forms
Engine install procedure.

6 Tap the Satellite Forms icon to open the RDK/SDK program.

The Satellite Forms screen appears with an empty Select Application to Run list.

7 Tap the Applications button to return to the picker screen. Then return the
handheld device to its cradle.

Installing Satellite Forms
Installation overview

35

8 To confirm the installation, download and test a sample Satellite Forms application,
as described in the following section.

Downloading and testing
a Satellite Forms

application

Procedure Download and test a Satellite Forms application

1 Open MobileApp Designer by double-clicking the Satellite Forms 8.0 icon on
your development computer’s desktop.

• If the icon is not on your desktop, click the Start button on the Windows
Taskbar, point to Programs > Satellite Forms 8.0, and click MobileApp
Designer.

2 Select File > Open from the MobileApp Designer menu.

The Open dialog box appears.

3 Using the Open dialog box, browse to the Restock folder.

The path to the Restock folder is <Satellite Form 8.0 install
directory>\Samples\Projects\Restock. If you installed Satellite Forms in the default
location, the full path is:
C:\Satellite Forms 8.0\Samples\Projects\Restock\

The file Open dialog box appears as shown in the following figure:

Figure 3.4 Open dialog box

4 Click Restock.sfa and click the Open button to open the project.

5 Select Handheld > Download App & Tables... from the MobileApp Designer
menu (or press the F5 function key).

If the Save table <table name> as dBase file dialog box appears, click Save until
the Ready to synchronize with handheld message box appears.

6 Press the HotSync button on the handheld cradle (this step is required for PalmOS
devices only, and is not needed for Windows Mobile/Pocket PC devices).

7 When the HotSync or ActiveSync transfer is finished, remove the handheld device
from the cradle and tap the Applications button (PalmOS) or Start > Programs
(Pocket PC).

Satellite Forms 8
Development Guide

36

8 Open Satellite Forms by tapping the Sat. Forms icon

9 From the Select Application to Run list, tap Store Restocking Demo.

The Restocking Visits screen appears and in the Stores to Visit list, Joe’s Food
Mart is selected.

10 Tap the Info button.

The Customer Info screen appears.

11 Tap the Notes button.

The Customer Notes screen appears and displays Offer discount on Pretzel
Products.

12 Tap OK to return to the Customer Info screen.

13 Tap OK to return to the Stores to Visit list.

14 Tap the Orders button.

 The current order list includes Pretzels and a quantity of 500.

15 Tap the Add button.

The Select Category screen appears.

16 Tap the Chips & Snacks button.

The Chips & Snacks screen appears.

17 Select Potato Chips, enter 4 on the Quantity line using pen input or the handheld
keyboard, and then tap the OK button.

The Orders screen now includes Potato Chips with a quantity of 4.

18 Tap the Done button.

19 Tap the Menu button and select Options > Exit to exit Satellite Forms.

Uninstalling Satellite Forms
The following sections provide instructions for uninstalling Satellite Forms
MobileApp Designer from your desktop computer, deleting Satellite Forms
applications from handheld devices, and uninstalling the Satellite Forms engine from
handheld devices.

Uninstalling MobileApp
Designer

You can uninstall MobileApp Designer at any time by using the Windows Add/
Remove Program option in the Windows Control Panel.

Procedure Uninstall MobileApp Designer

1 Click the Start button on the Windows Taskbar, point to Settings, click Control
Panel, and double-click the Add/Remove Programs icon.

2 Select Satellite Forms 8.0 from the programs listed, click the Change/Remove or
Add/Remove button (depending on your version of Windows), and follow the
prompts to uninstall the software.

Installing Satellite Forms
Uninstalling Satellite Forms

37

Uninstalling the Satellite
Forms Engine from Palm

OS devices

Procedure Uninstall the Satellite Forms Engine from a Palm OS device

1 Tap the Menu icon on the handheld application picker screen.

2 Select Delete.

3 Select Sat. Forms from the Delete list.

4 Tap the Delete button.

5 Tap Yes to confirm that you want to delete the Satellite Forms Engine or tap No if
you decide not to delete the engine.

Tap the Done button to return to the application picker screen.

Uninstalling the Satellite
Forms Engine from
Pocket PC devices

Procedure Uninstall the Satellite Forms Engine from a Pocket PC device

1 Tap the Start | Settings menu choice on the device.

2 Select the System tab and tap on Remove Programs.

3 Select Thacker Satellite Forms Runtime from the list.

4 Tap the Remove button.

5 Tap Yes to confirm that you want to delete the Satellite Forms Engine or tap No if
you decide not to delete the engine.

Satellite Forms 8
Development Guide

38

Quick Tour
Overview

39

Chapter 4
Quick Tour

Overview
This chapter is a step-by-step tutorial that shows you how to use MobileApp Designer
to create a simple Satellite Forms application that contains one table and two forms.
When the application is finished, you can download it to your handheld device and try
it out. In this tutorial, you will not integrate the handheld application with a database
application. For information on integrating handheld applications with a database
application, see Chapter , Integrating with your Database, on page 195.

This Quick Tour leads you through the steps to create a Windows Mobile/Pocket PC
application, but the same steps are used to create a PalmOS application: the skills you
learn can be applied to either mobile platform.

The Quick Tour includes
eight major steps:

1 Create a new project and select a handheld device target for it.

2 Create a table in which to store information.

3 Create the Main form and add controls to it.

4 Create the Notes form and add controls to it.

5 Assign actions to the Button controls.

6 Set the application’s properties.

7 Download the application to a handheld device and test it.

8 Upload the modified table to your development computer and verify changes.

Step 1. Opening a new project
The first step is to open a new project. A project can contain one or more application
targets, each of which can have a distinct name, if desired. An application target is a
specific set of configurations for a handheld device and OS. For example, you can
create a project with application targets for PalmOS and Pocket PC devices. You can
then build the project for one application target at a time or for both application targets
simultaneously.

Satellite Forms 8
Development Guide

40

1 Run MobileApp Designer. Click the Start button on the Windows Taskbar, point to
Programs > Satellite Forms 8.0, and click MobileApp Designer.

2 Create a new Project. Select File > New Project... from the MobileApp Designer
menu or click the New Project button on the General toolbar.

The Add Target dialog box appears as shown in the following figure:

Figure 4.1 Add Target dialog box

3 In the Add Target dialog box, set the following options and then click the OK
button:

• Target name: A name unique to the project that specifies the target, for
example, Palm or PocketPC.

• Platform: Select the target for the new project. For this tutorial, select
PocketPC. The Target name is updated to the default for that target when you
select it, which you can then edit if desired.

Tip Select Build > Targets... from the MobileApp Designer menu to add another
target platform to a project. You can then use the Build > Batch Build menu option to
build applications for all targets from a project in a single step.

MobileApp Designer then opens a default project with a blank form labeled
Form 1, as shown in the following figure:

Quick Tour
Step 2. Creating the CtvCustomers table

41

Figure 4.2 MobileApp Designer with new project open

Step 2. Creating the CtvCustomers table
Next, create a table for the application’s data. Projects can use more than one table,
but this tutorial uses just one simple table.

1 Select Edit > Insert Table from the MobileApp Designer menu.

The Table dialog box appears, similar to the one shown in the following figure:

Workspace palette Desktop Form design window Propertyspace palette

Satellite Forms 8
Development Guide

42

Figure 4.3 Table dialog box

The Table dialog box contains the following tabs:

• Layout: Add, remove, and edit columns or move columns up or down in the
table.

• Editor: Add data to a table to perform simple tests in your application.

2 Name the table by typing CtvCustomers in the Table Name edit box.

Ctv stands for Customers to Visit, which is the name of this sample application.
The name CtvCustomers ensures that the table name is unique. If two tables on a
handheld device have the same name, even if they are used by different
applications, they will overwrite each other when information is synchronized.
Satellite Forms recommends that you begin all table names with a unique prefix.
An abbreviation of the application name generally makes a good prefix.

When you create a new table, MobileApp Designer inserts a default column,
labeled COL_A. Begin by editing that column.

3 Click the Edit button to open the Edit Column dialog box, as shown in the
following figure:

Quick Tour
Step 2. Creating the CtvCustomers table

43

Figure 4.4 Edit Column dialog box

4 In the Edit Column dialog box, edit the fields as follows and then click the OK
button:

• Name of Column: Type ID.

• Data Type: Select Numeric.

• Num. Decimals: Use the default, None.

• Width: Use the default, 4.

 The ID column appears on the Layout tab.

5 Next, click the New button to open the Create New Column dialog box, with
which you can begin adding more columns.

Tip The Create New Column dialog box looks and functions like the Edit Column
box shown above.

6 Create the following columns:

• Name of Column: NAME; Data Type: Character; Width: 20.

• Name of Column: CITY; Data Type: Character; Width: 30.

• Name of Column: PHONE; Data Type: Character; Width: 12.

• Name of Column: NOTES; Data Type: Character; Width: 512.

When you have finished adding these columns, your table layout should look
similar to the one shown in the following figure:

Satellite Forms 8
Development Guide

44

Figure 4.5 Table dialog box, Layout tab

Next, add some sample information to the table. This data is used when you test the
application later.

7 To add information, click the Editor tab as shown in the following figure:

Quick Tour
Step 2. Creating the CtvCustomers table

45

Figure 4.6 Table dialog box, Editor tab

8 Next, click in the ID field, type a 1 in the cell, and then press the Tab key on your
keyboard to advance to the next field.

Tabbing to the last field of the last row or clicking the down-arrow key in the last
row adds a new row.

9 Enter the following data into the CtvCustomers table:

10 Adjust the column widths to show all of the information.

To adjust the column width, click and hold the divider between the NAME column
and the CITY column and drag it to the right until the full names are displayed.
Then do the same with the divider at the right-hand side of the CITY, PHONE,

Table 4.1 CtvCustomers table, sample data

ID NAME CITY PHONE NOTES

1 Mohammed’s Rochester 315-555-4393 Check inventory

2 Nicole’s Place Cobleskill 518-555-1234 Show catalog

3 The Outrigger Winterset 518-555-4563 Pick up returns

4 The Fortune Buffalo 315-555-5896 Pick up check

5 Joe’s Diner Albany 587-555-5487 Talk up specials

Satellite Forms 8
Development Guide

46

and NOTES columns. You can also shrink the ID column by clicking the divider
between ID and NAME and dragging it to the left.

The following figure shows an example of a table after data entry and column width
adjustment:

Figure 4.7 CtvCustomers table with data entered

11 When you are finished adjusting the column sizes, click the close button (X) in the
upper-right corner of the dialog box title bar to close the table editor.

Tip Save frequently while you are working in MobileApp Designer. Satellite Forms
also recommends creating a unique directory for each project.

12 Save the application by completing the following steps:

a Open the Save As dialog box using one of the following methods:

• Select File > Save from the menu bar.

• Click the Save button on the General toolbar.

• Press Ctrl + S on the keyboard.

b Right-click in the Save As dialog box and select New > Folder.

c Name the new folder Customers to Visit.

d Double-click the Customers to Visit folder to open it.

e Type Customers in the File Name edit box and then click the Save button.

Quick Tour
Step 3. Creating the Main form

47

The dialog box closes and Customers.sfa appears in the MobileApp Designer
title bar.

Step 3. Creating the Main form
In this step, you use the default form MobileApp Designer created to build the main
form that users work with when using the Customers to Visit application. First, set the
form properties, then add a Title control, three Text controls, three Edit controls, and a
Button control.

Tip You can create a new form by selecting Edit > Insert Form from the MobileApp
Designer menu.

Setting form properties 1 If Form 1 does not appear on the desktop, click the UI tab on the Workspace
palette and double-click the Form 1 icon.

Form 1 is blank, as shown in the following figure:

Figure 4.8 Form design window

Tip The form design window will look slightly different for a PalmOS application
target, because the forms are normally square for the PalmOS platform.

2 The next step is to set the form properties. Type the following information in the
value (right-hand) column of the Propertyspace palette:

• (Form): Double-click and type Main.

• Number of Pages: Use the default: 1.

• Menubar: Click the value field, which currently reads None, click the down-
arrow button, and then select Standard.

Satellite Forms 8
Development Guide

48

• Table: Click the value field, which currently reads None, click the down-
arrow button, click the lower spin button in the combo box, and then click
CtvCustomers.

This links the form to the CtvCustomers table, which means that the form
displays data from that source. When you select the linked table, the User
Permissions section becomes active. Do not change the default settings in the
User Permissions section.

The MobileApp Designer window should now look like the example shown in the
following figure. Note that the form is selected on the desktop and that the
Propertyspace and Workspace palettes are updated.

Figure 4.9 Main form

Inserting the title control Next, add a title to the form. The Title control sets the text that appears on the form
title bar when users are working with the application.

3 Click the Title Control button on the Control Palette toolbar.

A Title control appears at the top of the form at a fixed position. The Title control is
the selected object and the Propertyspace palette now shows the Title control
properties.

4 In the Propertyspace palette, edit the following fields to set the Title control
properties and then click the Title control:

• (Title): Double-click and type Customers_to_Visit.

Quick Tour
Step 3. Creating the Main form

49

Control names cannot contain spaces. The name appears next to the control’s
icon on the UI tab of the Workspace palette.

• Text: Type Customers to Visit.

This text appears on the form.

The MobileApp Designer window should now look like the example shown in the
following figure. Note that the Title control is selected on the form and that the
Propertyspace and Workspace palettes are updated.

Figure 4.10 Main form with Title control

Inserting Text controls
and Edit controls

Next, add fields in which the information in the NAME, CITY, and PHONE columns
of the table can be displayed and edited. To do this, add three Text controls and three
Edit controls. Text controls display static text on a form. They are useful for providing
information or labels for other controls. On this form, the Text controls label the Edit
controls. Edit controls display and allow the editing of data in a column in the form’s
linked table.

5 Click the Text Control button on the Control Palette toolbar.

A Text control appears below the Title control. The Text control is the selected
object and the Propertyspace palette shows the Text control properties.

6 In the Propertyspace palette, edit the following fields to set the Text control
properties and then click the Text control.

• (Text): Double-click and type Name.

• Text: Double-click and type Name.

Satellite Forms 8
Development Guide

50

• Font: Click and select Tahoma Bold 10 from the list.

• Visible: Use the default value, True.

• Left: Double-click and type 8.

• Top: Double-click and type 36.

• For a PalmOS target, choose the Bold 9 font, and set equivalent Left and Top
values so that the form layout matches the sample screenshot.

Tip You can also position controls by dragging them on the form. When a control is
selected, the current x-y coordinates are listed at the top of the Form design window.

The MobileApp Designer window should now look like the example shown in the
following figure. Note that the Text control is selected on the form and that the
Propertyspace and Workspace palettes are updated.

Figure 4.11 Main form with Text control

Next, add the first Edit control.

7 Click the Edit Control button on the Control Palette toolbar.

An Edit control appears below the Title control. The Edit control is the selected
object and the Propertyspace palette shows the Edit control properties.

All new controls appear at the same location on the form. When you add new
control, existing controls at that location are hidden. To show the existing control,
set a different location for the new control using the Left and Top properties or
simply click and drag the new control to another location on the form.

Quick Tour
Step 3. Creating the Main form

51

8 In the Propertyspace palette, edit the following fields to set the Edit control
properties and then click the Edit control.

• (Edit Text): Double-click and type Customer_Name.

• Column: Click and select NAME from the list.

This binds the Customer_Name Edit control to the NAME column in the
CtvCustomers table.

• Attributes: Set the Font to Tahoma 10 and use the default values for all other
properties in the Attributes section.

• Left: Double-click and type 8.

• Top: Double-click and type 60.

• Width: Double-click and type 200.

• For a PalmOS target, choose the Normal 9 font, and set equivalent Left and
Top values so that the form layout matches the sample screenshot.

Tip You can also resize a control by simply clicking and dragging the grapples on the
left or right edge of the control. When you select a control, the current Width and
Height properties are listed at the top of the Form design window.

The MobileApp Designer window should now look like the example shown in the
following figure. Note that the Edit control is selected on the form and that the
Propertyspace and Workspace palettes are updated.

Figure 4.12 Main form with Edit control

Satellite Forms 8
Development Guide

52

Next add Text controls and Edit controls for the CITY and PHONE fields.

9 To add the City text field, click the Text Control button on the Control
Palette toolbar and then edit the following fields in the Propertyspace palette:

• (Text): Double-click and type City_Name.

• Text: Double-click and type City.

• Font: Click and select Tahoma Bold 10 from the list.

• Visible: Use the default value, True.

• Left: Double-click and type 8.

• Top: Double-click and type 92.

• For a PalmOS target, choose the Bold 9 font, and set equivalent Left and Top
values so that the form layout matches the sample screenshot.

10 To add the City edit field, click the Edit Control button on the Control
Palette toolbar and then edit the following fields in the Propertyspace palette:

• (Edit Text): Double-click and type City.

• Column: Click and select CITY from the list.

• Attributes: Set the Font to Tahoma 10 and use the default values for all other
properties in the Attributes section.

• Left: Double-click and type 8.

• Top: Double-click and type 116.

• Width: Double-click and type 200.

• For a PalmOS target, choose the Normal 9 font, and set equivalent Left and
Top values so that the form layout matches the sample screenshot.

11 To add the Phone text field, click the Text Control button on the Control
Palette toolbar and then edit the following fields in the Propertyspace palette:

• (Text): Double-click and type Phone_Number.

• Text: Double-click and type Phone.

• Font: Click and select Tahoma Bold 10 from the list.

• Visible: Use the default value, True.

• Left: Double-click and type 8.

• Top: Double-click and type 148.

• For a PalmOS target, choose the Bold 9 font, and set equivalent Left and Top
values so that the form layout matches the sample screenshot.

12 To add the Phone edit field, click the Edit Control button on the Control
Palette toolbar and then edit the following fields in the Propertyspace palette:

• (Edit Text): Double-click and type Phone.

• Column: Click and select PHONE from the list. Use the spin buttons to scroll
through the list of columns, if necessary.

Quick Tour
Step 3. Creating the Main form

53

• Attributes: Set the Font to Tahoma 10 and use the default values for all other
properties in the Attributes section.

• Left: Double-click and type 8.

• Top: Double-click and type 172.

• Width: Double-click and type 200.

• For a PalmOS target, choose the Normal 9 font, and set equivalent Left and
Top values so that the form layout matches the sample screenshot.

When you have finished setting up these controls, the Main form should look like the
example shown in the following figure:

Figure 4.13 Main form with Text and Edit controls

Inserting a Button
control

Next, add a button labeled Notes. Information from the NOTES column of the
CtvCustomers table is displayed on a separate form which users access by tapping the
Notes button.

13 Click the Button Control button on the Control Palette toolbar and drag the
control to the bottom of the form.

14 Edit the following fields in the Propertyspace palette:

• (Button): Double-click and type Notes.

• Text: Double-click and type Notes.

This text is the button label. The button automatically sets its size based on the
label, but you can use the Width and Height properties to set the button size
manually.

Satellite Forms 8
Development Guide

54

• Attributes: Set the Font to Tahoma Bold 10 and use the default values for all
other properties in the Attributes section.

• Left: Double-click and type 80.

• Top: Double-click and type 216.

• For a PalmOS target, choose the Bold 9 font, and set equivalent Left and Top
values so that the form layout matches the sample screenshot.

The Main form is now complete and should look like the example shown in the
following figure:

Figure 4.14 Main form with Notes button

15 Close the Main form and continue with the following section.

Step 4. Creating the Notes form
Next, add a new form for data from the NOTES column of the CtvCustomers table.
This form is for jotting down ideas or viewing important customer information.

Creating and configuring this form is similar to setting up the Main form. The process
involves adding and configuring one Title control, one Paragraph control, and one
Button control.

Creating the new form First, add a new form to the application.

1 Select Edit > Insert Form from the MobileApp Designer menu.

A new form labeled Form 2 appears on the desktop.

2 In the Propertyspace palette, set the following properties:

Quick Tour
Step 4. Creating the Notes form

55

• (Form): Double-click and type Notes.

• Number of Pages: Use the default, 1.

• Menubar: Click the value field, which currently reads None, click the down-
arrow button, and then select Standard.

• Table: Click the value field, which currently reads None, click the down-arrow
button, click the lower spin button in the drop-list, and then click
CtvCustomers.

• Permissions: Set the Modify property to True so that the notes can be
modified on the handheld, but set all other properties in the Permissions section
to False.

The MobileApp Designer window should now look like the example shown in the
following figure:

Figure 4.15 Notes form

Adding the Title control Now add the Title control to the Notes form.

3 Click the Title Control button on the Control Palette toolbar.

A Title control appears at the top of the form at a fixed position. The Title control is
the selected object and the Propertyspace palette now shows the Title control
properties.

4 In the Propertyspace palette, edit the following fields to set the Title control
properties and then click the Title control:

• (Title): Double-click and type Customer_Notes.

Satellite Forms 8
Development Guide

56

• Text: Type Customer Notes.

The MobileApp Designer window should now look like the example shown in the
following figure:

Figure 4.16 Notes form with Title control

Inserting the Paragraph
control

Next, add a Paragraph control and link it to the NOTES column of the CtvCustomers
table so that users can enter or view notes. Because the NOTES column can contain
the equivalent of many lines of information, use a Paragraph control. A Paragraph
control is similar to an Edit control, except that it can display and edit multiple lines of
information.

5 Click the Paragraph Control button on the Control Palette toolbar.

A Paragraph control appears below the Title control. The Paragraph control is the
selected object and the Propertyspace palette shows the Paragraph control
properties.

6 Edit the following fields in the Propertyspace palette and then click the Paragraph
control:

• (Paragraph): Double-click and type Notes_Paragraph.

• Column: Click and select NOTES from the list. Use the spin buttons to scroll
through the list of columns, if necessary.

• Attributes: Set the Font to Tahoma 10 and use the default values for all other
properties in the Attributes section.

• Left: Double-click and type 8.

Quick Tour
Step 4. Creating the Notes form

57

• Top: Double-click and type 30.

• Width: Double-click and type 220.

• Height: Double-click and type 200.

• For a PalmOS target, choose the Normal 9 font, and set equivalent Left and
Top values so that the form layout matches the sample screenshot.

The Notes form should now look like the example shown in the following figure:

Figure 4.17 Notes form with Paragraph control

Inserting the Button
control

Next add a Button control so users can close the form and return to the Main form
when they finish entering or viewing data in the Notes field.

7 Click the Button Control button on the Control Palette toolbar and then drag
the control to the bottom of the form.

8 Edit the following fields in the Propertyspace palette:

• (Button): Double-click and type OK.

• Text: Double-click and type OK.

• Attributes: Set the Font to Tahoma Bold 10 and use the default values for all
other properties in the Attributes section.

• Left: Double-click and type 96.

• Top: Double-click and type 244.

• Width: Double-click and type 40.

• For a PalmOS target, choose the Bold 9 font, and set equivalent Left and Top
values so that the form layout matches the sample screenshot.

Satellite Forms 8
Development Guide

58

The Notes form is now complete and should look like the example shown in the
following figure:

Figure 4.18 Notes form with OK button

9 Leave the Notes form open and continue with the following section.

Step 5. Assigning actions to the buttons
Next, assign an action to the two buttons in the application. Start with the Notes form
because it is already open.

1 On the Notes form, click the OK button to select it.

The Button control properties appear in the Propertyspace palette.

Tip You can also select a control by clicking its icon on the Workspace palette.

2 Click the Edit Action button to open the Control Action and Filters dialog box.

3 Select Return to Prev. Form from the Action Type list.

The Return to Prev. Form action specifies that when you tap this button on the
handheld device, the current form closes and the previously displayed form
appears. The Control Action and Filters dialog box should now look like the
example shown in the following figure:

Quick Tour
Step 5. Assigning actions to the buttons

59

Figure 4.19 Control Action and Filters dialog box

4 Click the OK button to close the Control Action and Filters dialog box and apply
the selected action.

The Notes form is now complete.

5 Close the Notes form.

6 Open the Main form by double-clicking the Main form icon on the UI tab of the
Workspace palette.

7 Click the Notes button to display its properties in the Property space palette and
then click the Edit Action button.

The Control Action and Filters dialog box appears.

8 Change the settings as follows:

• Action Type: Select Jump to Form.

• Target Form: Select Notes.

• Record Creation Options: Use the default setting, Create if no records.

When you have finished, the dialog box should look like the example shown in the
following figure:

Satellite Forms 8
Development Guide

60

Figure 4.20 Control Action and Filters dialog box for Notes button

9 Click the OK button to close the Control Action and Filters dialog box.

10 Close the Main form.

11 Save the application and then continue with the following section.

Step 6. Setting project properties
In this step, you set the project properties for the application. Application properties
include the name of the application, which form appears when the application is
opened, and which database formats to use.

1 Select Edit > Project Properties from the menu.

• The Project Properties dialog box appears, as shown in the following figure:

Quick Tour
Step 6. Setting project properties

61

Figure 4.21 Project Properties dialog box

2 Edit the following project properties:

• Name of Application: type Customers to Visit.

This is the name of the handheld application.

• Initial Form: Use the default, Main.

The Initial Form setting determines which form appears first when the
application runs on the handheld.

• Creator ID: Use the default, SMSF.

• Desktop DB Format: Use the default value.

• Device DB Format: Use the default value.

• Under Options, clear the Down Key at Table End Creates Record check box
and use the default settings for the other check boxes.

• For a PalmOS target, use the same Project Properties settings as shown here
for the PocketPC target.

The Project Properties dialog box should now look like the example shown in the
following figure:

Satellite Forms 8
Development Guide

62

Figure 4.22 Project Properties dialog box

3 Click OK to close the dialog box.

The Customers application is now complete. The UI tab of the Workspace palette
should now look like the example shown in the following figure:

Quick Tour
Step 7. Downloading the application to a handheld and testing

63

Figure 4.23 Workspace palette, UI tab for completed Customers to Visit application

The icons in the Workspace palette represent the two forms and their controls.
Information about the table appears on the Tables tab. These objects make up the
Customers to Visit application, which is now ready to be downloaded to your
handheld device for testing.

Step 7. Downloading the application to a handheld and testing
1 To test this application, place the handheld device in its cradle, or connect its cable.

2 Select Build > Rebuild All from the MobileApp Designer menu, click the Rebuild
All button on the Misc toolbar, or press F7 to build the Customers to Visit
application.

3 Select Handheld > Download App & Tables... or click the Download App &
Tables button on the Misc toolbar, or press F5.

The Download Application to Handheld progress indicator appears, as shown in the
following figure:

Figure 4.24 Download Application to Handheld progress indicator

Tip The PalmOS download process will differ slightly than the PocketPC process
shown here. A Download Application prompt will appear, asking you to press the
HotSync button on the Palm cradle to begin.

4 When the transfer is complete, remove the handheld from the cradle, tap the Start
> Programs button, and then tap the Satellite Forms icon.

Satellite Forms 8
Development Guide

64

The Satellite Forms Engine starts.

5 From the Open Application list, tap Customers to Visit.

The Customers to Visit screen, which is the Main form, appears and the first record
from the CtvCustomers table, Mohammed’s, is listed.

6 Verify that Rochester appears under City and 315-555-4393 appears under Phone.

7 Tap the Notes button.

8 The Customer Notes screen, which is the Notes form, opens. Check inventory is
displayed.

9 Tap the OK button to return to the Customers to Visit screen.

10 To display the next record, press the Down scroll button on the handheld. Check
the information displayed to see if it matches what you entered. Tap the Notes
button to verify the note text. Tap the OK button to return to the Customers to Visit
screen.

11 Repeat this process for the remaining three records: The Outrigger, The Fortune,
and Joe’s Diner.

Editing a record 1 Tap the Menu button on the handheld’s screen and select Records > Goto First
from the menu to return to the first record.

2 Tap the Notes button to open the Notes form.

3 Select the text Check inventory by tapping after the y in inventory and dragging
the stylus to the left (highlighting the text as you drag).

4 Now write Get RMA number in the pen input writing area, or by using the
device’s keyboard if applicable, or use the onscreen keyboard.

The new text replaces the original text on the screen.

5 Tap the OK button to return to the Customers to Visit screen and then select
Options > Exit from the handheld’s menu.

Step 8. Uploading changes and verifying
The last step in this quick tour is to upload the Customers to Visit application back to
your development computer and verify the changes made on your handheld device.

1 Place the handheld in its cradle, or connect its cable.

2 With the Customers application open in MobileApp Designer, select
Handheld > Upload Tables from the menu or click the Upload Tables
button on the Misc toolbar.

Tip The PalmOS upload process will prompt you to press the HotSync button on the
Palm cradle to begin.

3 When the transfer is complete, open the CtvCustomers table in MobileApp
Designer and verify that Get RMA number appears in the NOTES column for the
first record.

Quick Tour
Step 8. Uploading changes and verifying

65

Conclusion
Congratulations! You have now created and tested your first Satellite Forms
application. At this point, you should have a good understanding of the basic concepts
involved in creating an application using MobileApp Designer.

The next chapter, MobileApp Designer Reference, on page 67, provides additional
details on how to work with MobileApp Designer.

Using Actions, Filters, Extensions, and Color, on page 177, provides instructions on
setting control actions and filters, and introduces extensions.

Integrating with your Database, on page 195, explains the basics of integrating a
Satellite Forms application with a database application.

The basic knowledge you gained from the tutorial you just completed should make the
information contained in these chapters easier to understand and use.

For a more complex sample that focuses on demonstrating the capabilities of Satellite
Forms rather than on the systematic construction of an application, see Sample
Application: Work Order, on page 527.

Satellite Forms 8
Development Guide

66

MobileApp Designer Reference
MobileApp Designer main window

67

Chapter 5
MobileApp Designer Reference

This chapter presents a complete reference for using MobileApp Designer to design,
assemble, and build custom applications. It is organized into the following sections:

• MobileApp Designer main window: A description of the appearance and function
of MobileApp Designer’s user-interface components.

• Project Properties dialog box: Instructions on how to set the project properties
available in MobileApp Designer.

MobileApp Designer main window
MobileApp Designer is the desktop computer tool you use to create the forms and
tables that make up Satellite Forms applications. It has six basic elements: the main
menu, the toolbars, the Workspace palette, the Propertyspace palette, the status bar,
and the desktop.

To run MobileApp Designer, click the Start button on the Windows Taskbar, then
select Programs > Satellite Forms 8.0, and click MobileApp Designer.

When you first run MobileApp Designer, a blank desktop is displayed as shown in the
following figure:

Satellite Forms 8
Development Guide

68

Figure 5.1 MobileApp Designer main window

To create a new project, click the New Project button on the General toolbar,
select File > New Project from MobileApp Designer menu, or use the keyboard
shortcut, Ctrl + N.

MobileApp Designer Reference
MobileApp Designer main window

69

The Add Target dialog box appears as shown in the following figure:

Figure 5.2 Add Target dialog box

A project can contain one or more application targets, each of which can have a
distinct name, if desired. An application target is a specific set of configurations for a
handheld device and OS. For example, you can create a project with application
targets for Palm and Pocket PC handhelds. You can then build the project for one
application target at a time or for both application targets simultaneously.

Satellite Forms 8
Development Guide

70

When you open a new project, MobileApp Designer appears as shown in the
following figure:

Figure 5.3 MobileApp Designer window with new project open

• The Workspace palette appears in the left pane.

• The desktop appears in the center of the MobileApp Designer window. The Form
design window with a default form loaded appears on the desktop when you first
open a new project.

• The Propertyspace palette appears in the right pane.

• The project name appears in the title bar.

Workspace palette The Workspace palette displays the contents of the current project in a tabbed,
dockable pane. The Workspace palette contains four tabs: UI, Tables, Scripts, and
Extensions. These tabs organize all of the corresponding items in your project.

Each tab contains one or more icons that organize the contents of the current project.
If an icon contains other items, a plus sign (+) appears to the left of the icon. To
expand the list of items under an icon, click the plus sign. To collapse the list of items
under an icon, click the minus sign (-) to the left of the icon.

Form design window

Workspace palette
Status bar Desktop

Propertyspace palette

Main menu Toolbars

MobileApp Designer Reference
MobileApp Designer main window

71

To dock the Workspace palette, drag the window to the desired edge of the
MobileApp Designer main window and drop it there. To undock the Workspace
palette, drag the top of the palette to the center of the desktop and drop it there. The
Workspace then palette behaves like an ordinary window on the desktop.

To set the size of the Workspace palette while it is docked, drag the side adjacent to
the desktop as desired. To set the size of the Workspace palette while it is undocked,
drag the desired edge or edges until it is the right size.

To view or hide the Workspace palette, whether it is docked or not, select View >
Project Contents from the MobileApp Designer menu.

Each tab is shown and described in this section in order of appearance.

UI tab The UI tab organizes all user interface elements in the current project. The undocked
Workspace palette with the UI tab selected is shown in the following figure:

Figure 5.4 Workspace palette (undocked), UI tab

The root icons on the UI tab shown above are defined in the following table:

Table 5.1 UI tab root icons

Icon Description

The Forms icon shows all forms in the current project, sorted
alphabetically. Any controls in a form are listed as sub-branches under
the form’s icon, under Main and Notes in this case.

The Menus icon shows all menus in the current project.

Satellite Forms 8
Development Guide

72

To perform a variety of actions on the items in the UI tab, use the actions listed in the
following table:

Table 5.2 Workspace palette, UI tab mouse actions

Action Effect

Double-click the
Forms root icon.

Displays the Project Properties dialog box, as shown in Figure 5.13 on
page 83, which allows you to set a variety of properties for the current
application target.

Right-click the Forms
root icon.

Displays a pop-up menu.

• Select Insert Form to add a new form in the current project.

• Select Paste Form to paste a form from the clipboard into the
current project.

Double-click a Form
icon.

Opens the form on the desktop and displays its properties on the
Propertyspace palette.

Right-click a Form
icon.

Displays a pop-up menu:

• Select Cut Form to remove the form from the current project and
place it on the clipboard.

• Select Delete Form to remove the form from the current project.

• Select Copy Form to copy the form to the clipboard.

• Select Paste Form to paste a form from the clipboard into the
current project.

• Select Paste Control to paste a control from the clipboard onto the
selected form. This option appears only if the item on the clipboard
is a control.

Note: MobileApp Designer prompts you to confirm both the Cut Form
and Delete Form operations before it either cuts or deletes the form.

Click the plus or minus
sign to the left of a
Form icon.

Displays or hides the form’s control icons.

Double-click a Control
icon.

Selects the control and displays its properties in the Propertyspace
palette.

Right-click a Control
icon.

Displays a pop-up menu:

• Select Control Script to jump to the Scripts tab and display the
control’s script on the desktop. This menu option is only available
when the selected control’s action is set to Run Script

• Select Cut Control to remove the form from the current project and
place it on the clipboard.

• Select Delete Control to delete the control. MobileApp Designer
does not prompt you before deleting the selected control.

• Select Copy Control to copy a control to the clipboard.

Right-click a grayed-
out Control icon

Displays a pop-up menu:

• Select Include in Target to add the selected control to the current
application target.

Note: A Control icon is grayed out when the control is used on the
same form in a different application target, but not in the current
application target.

MobileApp Designer Reference
MobileApp Designer main window

73

Right-click the Menus
root icon

Displays a pop-up menu:

• Select Insert Menubar to add a new Menubar to the menu.

• Select Paste to paste a Menubar from the clipboard into the current
project.

Click the plus or minus
sign to the left of a
Menus icon.

Displays or hides the menu’s Menubar icons.

Click a Menubar icon Selects the Menubar and displays its properties in the Propertyspace
palette.

Right-click a Menubar
icon

Displays a pop-up menu:

• Select Insert Menu to add a new menu to the selected Menubar.

• Select Cut Menubar to remove the Menubar from the current
project and place it on the clipboard.

• Select Delete Menubar to remove the Menubar from the current
project. MobileApp Designer does not prompt you before deleting
the selected Menubar.

• Select Copy Menubar to copy the Menubar to the clipboard.

• Select Paste Menu to paste a menu from the clipboard into the
current project.

Click a Menu icon Selects the menu and displays its properties in the Propertyspace
palette.

Right-click a Menu
icon

Displays a pop-up menu:

• Select Insert Menu Item to add a new menu item to the selected
menu.

• Select Cut Menu to remove the menu from the current project and
place it on the clipboard.

• Select Delete Menu to remove the menu from the current project.
MobileApp Designer does not prompt you before deleting the
selected menu.

• Select Copy Menu to copy the menu to the clipboard.

• Select Paste Menu Item to paste a menu from the clipboard into the
current project.

Click the plus or minus
sign to the left of a
Menubar icon.

Displays or hides the Menubar’s Menu Items icons.

Click a Menu Item icon Selects the Menu Item and displays its properties in the Propertyspace
palette.

Right-click a Menu
Item icon

Displays a pop-up menu:

• Select Cut Menu Item to remove the Menu Item from the current
project and place it on the clipboard.

• Select Delete Menu Item to remove the Menu Item from the current
project. MobileApp Designer does not prompt you before deleting
the selected Menu Item.

• Select Copy Menu Item to copy the Menu Item to the clipboard.

Table 5.2 Workspace palette, UI tab mouse actions (Continued)

Action Effect

Satellite Forms 8
Development Guide

74

Tables tab The Tables tab organizes all tables in the current project. The undocked Workspace
palette with the Tables tab selected is shown in the following figure:

Figure 5.5 Workspace palette (undocked), Tables tab

The root icon on the Tables tab shown above is defined in the following table:

Right-click a grayed-
out Menubar, Menu,
or Menu Item icon

Displays a pop-up menu:

• Select Include in Target to add the selected Menubar, Menu, or
Menu Item to the current application target.

Note: An icon is grayed out when the item is used on the same form in
a different application target, but not in the current application target.

Table 5.2 Workspace palette, UI tab mouse actions (Continued)

Action Effect

Table 5.3 Tables tab root icon

Icon Description

The Tables icon shows all tables in the current project, sorted
alphabetically.

MobileApp Designer Reference
MobileApp Designer main window

75

To perform a variety of actions on the items in the Tables tab, use the actions listed in
the following table:

Table 5.4 Workspace palette, Tables tab mouse actions

Action Effect

Right-click the Tables
root icon.

Displays a pop-up menu:

• Select Insert Table to open a new table on the desktop.

• Select Import Table to import a table schema from an external
database.

• Select Paste Table to paste a table from the clipboard into the
current project. This option is available only if the item on the
clipboard is a table.

Click a Table icon. Opens the Table design dialog box for the selected table.

Right-click a Table
icon.

Displays a pop-up menu:

• Select Cut Table to remove the table from the current project and
place it on the clipboard.

• Select Delete Table to delete the table.

• Select Copy Table to copy the table to the clipboard.

• Select Paste Table to paste a table from the clipboard into the
current project. This option is available only if the item on the
clipboard is a table.

Note: MobileApp Designer prompts you to confirm both the Cut Table
and Delete Table operations before it either cuts or deletes the table.

Satellite Forms 8
Development Guide

76

Scripts tab The Scripts tab organizes all scripts in the current project. The undocked Workspace
palette with the Scripts tab selected is shown in the following figure:

Figure 5.6 Workspace palette (undocked), Scripts tab

The root icon on the Scripts tab shown above is defined in the following table:

To perform a variety of actions on the items in the Scripts tab, use the actions listed in
the following table:

Table 5.5 Scripts tab root icon

Icon Description

The Scripts icon shows all scripts in the current project. Global scripts
apply to the entire project, while form and menu scripts apply only to
the form or menu that owns them.

Table 5.6 Workspace palette, Scripts tab mouse actions

Action Effect

Right-click the Scripts root
icon, a Form or Menu icon.

Displays a pop-up menu:

• Select Show Script to open the Global/Variables script in
the script editing window.

Double-click a Form or Menu
icon.

Opens or brings to the front the selected form or menu.

Right-click an individual Script
icon, AfterChange, AfterLoad,
etc.

Displays a pop-up menu:

• Select Compile Script to compile the selected script.

MobileApp Designer Reference
MobileApp Designer main window

77

Extensions tab The Extensions tab organizes all extensions in the current project. The undocked
Workspace palette with the Extensions tab selected is shown in the following figure:

Figure 5.7 Workspace palette (undocked), Extensions tab

Extensions are programs that provide added functionality to your applications. See
Adding extensions to Satellite Forms on page 188 for more information.

Click an individual Script icon,
AfterChange, AfterLoad, etc.

Opens the selected script in the script editing window.

Table 5.6 Workspace palette, Scripts tab mouse actions (Continued)

Action Effect

Table 5.7 Extensions tab root icon

Icon Description

The Extensions icon shows all extensions in the current project,
sorted alphabetically.

Satellite Forms 8
Development Guide

78

To perform a variety of actions on the items in the Extensions tab, use the actions
listed in the following table:

MobileApp Designer menus
The MobileApp Designer menu bar provides menus that help you complete specific
tasks. The File, View, Tools, and Help menus are always available. When you open a
project with MobileApp Designer, the Edit, Handheld, Build, and Window menus
appear on the menu bar.

Some menu options have keyboard shortcuts. For example, pressing Ctrl + S on the
keyboard is the same as selecting File > Save from the menu. If a keyboard shortcut
for an option exists, it appears next to the menu option, as shown in Figure 5.8 on
page 79.

The following sections describe the options on each menu.

MobileApp Designer File menu
The File menu, as shown in the following figure, provides basic file management
features for creating, opening, and saving project files.

Table 5.8 Workspace palette, Extensions tab mouse actions

Action Effect

Right-click the Extensions
root icon.

Displays a pop-up menu:

• Select Extensions... to display the Available Extensions
dialog box, as shown in Figure 5.15 on page 86, from which
you can select extensions to add or remove by checking or
clearing the check box to the left of each extension name.

Double-click the Extensions
icon.

Displays the Available Extensions dialog box, as shown in
Figure 5.15 on page 86, from which you can select extensions to
add or remove by checking or clearing the check box to the left of
each extension name.

Right-click an Extension
icon.

Displays a pop-up menu.

• Select Properties... to display the Extension Properties dialog
box, which provides details about the selected extension.

• Select Delete to remove the extension from the current
project.

Note: MobileApp Designer prompts you to confirm the Delete
operation before it removes the selected extension from the
current project.

Double-click an Extension
icon.

Displays the Extension Properties dialog box, which provides
details about the selected extension.

Right-click an extension
Method icon.

Displays a pop-up menu.

• Select Properties... to display the Properties of Method dialog
box, which provides details about the selected method.

Double-click an extension
Method icon.

Displays the Properties of Method dialog box, which provides
details about the selected method.

MobileApp Designer Reference
MobileApp Designer menus

79

Figure 5.8 MobileApp Designer File menu

The File menu provides the following options:

• New Project...: Opens a new Satellite Forms project.

• Open Project...: Displays a standard file Open dialog box that allows you to open
an existing project.

• Close Project: Closes the current project. If you have made unsaved changes to
the project, MobileApp Designer prompts you to save the project before closing it.

• Save: Saves the current project. If the current project is new and you have not
saved it, MobileApp Designer opens the Save As dialog box, which allows you to
name the project and select the directory in which to save it.

• Save As...: Opens the Save As dialog box, which allows you to rename the project
and select the directory in which to save it.

• Print Preview: Opens a Print Preview window on the desktop that shows you
how your printed pages will appear.

• Page Setup...: Displays the standard Print Setup dialog box, which allows you to
select a printer and set other printing options.

• Print...: Displays the standard Print dialog box, which allows you to set printing
options and to print the current form.

• Print All Forms...: Displays the standard Print dialog box, which allows you to
set printing options and to print all forms in the current project.

• Print All Scripts...: Displays the standard Print dialog box, which allows you to
set printing options and to print all scripts in the current project.

• Recent Project List: Displays up to the four most recently opened projects. Click
the desired project file name or type the corresponding number on the keyboard to
open the selected project.

• Exit: Closes MobileApp Designer. If you have a project open that has unsaved
changes, MobileApp Designer prompts you to save the project before closing.

Satellite Forms 8
Development Guide

80

MobileApp Designer Edit menu
The wording of the options on the Edit menu and in some cases the options that
appear on the menu, depend on how you are using MobileApp Designer. Any options
that are not available for the current operation are either grayed-out or do not appear
on the Edit menu. A representative Edit menu appears in the following figure:

Figure 5.9 MobileApp Designer Edit menu

The Edit menu contains some or all of the following options:

• Undo: Select this option to reverse the preceding action. For example, select this
option to restore the most recent deletion from a script. This option is available
only if the preceding action can be undone.

• Redo: Select this option to repeat the preceding action. For example, select this
option to restore the portion of a script removed with the Undo option. This option
is available only if the preceding action can be re-done.

• Cut <Item>: Cuts the selected item from the project and places it on the
clipboard. If you select multiple items, all are cut to the clipboard. You can paste
items from the clipboard into the same project or into a different project. In some
cases, the type of item that can be cut is displayed in the menu option text.

• Copy <Item>: Copies the selected item and places it on the clipboard. If you
select multiple items, all are copied to the clipboard. You can paste items from the
clipboard into the same project or into a different project. In some cases, the type
of item that can be copied is displayed in the menu option text.

MobileApp Designer Reference
MobileApp Designer menus

81

• Paste <Item>: Pastes the item from the clipboard into the current project. If the
clipboard contains multiple items, all are pasted into the current project. You can
paste items from the clipboard into the same project or into a different project. In
some cases, the type of item currently on the clipboard is displayed in the menu
option text.

• Delete <Item>: Deletes the selected item from the project. Some items, such as
scripts, allow you to select Undo to restore the most recent deletion. Controls and
most other items do not. If you are unsure about a deletion, use the
Edit > Cut <Item> option instead. You can then restore the item by pasting it
back into the form, table, or other part of the current project. Remember that the
clipboard holds only one item at a time and any other Cut or Copy operation
replaces the previous item in the clipboard.

• Select All: Selects all controls on the current form or all records in the table open
in the table editor. You can then Cut, Copy, or Delete the selected items as
desired.

• Find...: Applies only to scripts. Displays the Find dialog box, which allows you to
specify the text to search for in the current script and other search options. An
example Find dialog box appears in the following figure:

Figure 5.10 Find dialog box

• Find in Project...: Applies only to scripts. Displays the Find in Project dialog
box, which allows you to specify the text to search for in all scripts in the current
project and other search options. An example Find in Project dialog box appears
in the following figure:

Figure 5.11 Find in Project dialog box

• Find Next: Applies only to scripts. Searches for the next occurrence of the text
entered in the Find or Find in Project dialog box.

• Replace...: Applies only to scripts. Displays the Replace dialog box, which
allows you to specify the text to search for, the text to replace the search text, and

Satellite Forms 8
Development Guide

82

other options. You can replace individual instances of the search text or replace all
such instances using the buttons in the Replace dialog box. An example Replace
dialog box appears in the following figure:

Figure 5.12 Replace dialog box

• Insert Form: Adds a new, blank form to the current project. See Creating and
editing forms on page 114 for more information.

• Insert Menubar: Adds a new, empty menu to the current project. See Working
with menus on page 118 for more information.

• Insert Table: Adds a new, empty table to the current project. See Working with
tables on page 103 for more information.

• Import Table: Imports a table schema into the current project. Use this option to
load one or more tables from an external ODBC-enabled database. MobileApp
Designer automatically creates the structure (schema) of the tables, but does not
import any data they may contain into the current project. See Importing tables on
page 108 for more information.

• Bring Control to Front/Send Control to Back: A control’s stacking or z-order
determines whether it draws on top of or underneath another control in the same
location on a form. The Bring Control to Front option places the selected control
at the top of the z-order, making it draw on top of all other controls at the same
location on the form. The Send Control to Back option places the selected
control at the bottom of the z-order, making it draw underneath all other controls
at the same location on the form.

MobileApp Designer Reference
MobileApp Designer menus

83

• Project Properties...: Opens the Project Properties dialog box for the current
project and application type: Palm or Pocket PC. An example Project Properties
dialog box appears in the following figure:

Figure 5.13 Project Properties dialog box

• Name of Application: The name of the current application target. This is the
application name that appears on the Satellite Forms Select Application to
Run window on the handheld device. The name can be the same or different for
each target. In the example above, the target is Palm OS.

• Initial Form: The form that first appears when a user starts the application.

• Version: The Major and Minor version numbers for the application.

• Creator ID: The four-character unique ID of the application creator. This
option originates from and applies primarily to Palm OS applications, but
also affects Pocket PC applications. The Creator ID for your applications
must be unique to avoid conflicts with other applications running on the same
handheld device. Use one of the ten Creator IDs that Satellite Forms has
reserved (SMS0 to SMS9), or enter your own unique Creator ID. Deployments
internal to an organization can take advantage of the reserved IDs provided
other applications within the organization are not already using them.
Deployments to third parties should always have a unique Creator ID to avoid
potential conflicts with other existing applications. You can obtain a unique
Creator ID for free from the ACCESS Americas (formerly PalmSource)
website, which maintains a database of registered Creator IDs. The Creator ID

Satellite Forms 8
Development Guide

84

makes up a part of the filenames for database tables in your application on both
the Palm OS and Pocket PC platforms, so if you are creating a cross-platform
application, you need to make sure that it is the same for all platform targets.

• Desktop DB Format: The database engine plug-in and format of the database
on the desktop to which the application is linked.

• Device DB Format: The database engine plug-in and format of the database on
the handheld device on which the application runs.

Tip While you can select either the Pocket PC DB (CDB) or Palm DB (PDB) device
database format for Pocket PC applications, we strongly recommend using the Palm
DB database format only. The Palm DB format provides numerous performance,
synchronization, and reliability advantages over the Pocket PC DB format.

• Options: These settings control how an application works with tables:

• Down key at table end creates record: Check this box to allow the user to
add a new record to a table by pressing the down key on the handheld device
when viewing the last record in the current table. A confirmation dialog box
prompts the user to create a new record. When you clear this check box,
pressing the down key after reaching the last record causes the handheld
device to beep.

Tip You can create or delete a record using the handheld device’s Records menu. For
information, see Palm OS Satellite Forms application menus on page 227.

• The option Enable Filter Wildcard Value allows you to set a wildcard
value for filters. This value can be characters (for example, *) or keywords
(all), or combinations of both. By default, filter wildcards are enabled and
the wildcard value is set to (all). When filter wildcards are enabled and a
filter’s criterion is set to the wildcard value, the filter is removed. For more
information on using wildcard values while setting filters, see Adding or
editing a filter on page 185.

• Oracle® Lite compatible tables: Check this box to enable seamless
interoperability with Oracle Lite from Oracle Corporation. The Oracle Lite
Consolidator, which runs with Oracle Lite on a desktop computer, reads
Satellite Forms tables directly and bi-directionally synchronizes data
changes. Use Oracle Lite on the desktop computer to store data; use the
Oracle Lite Consolidator to transfer data to and from the handheld device.
When the data is in Oracle Lite, transfer it to your full Oracle
implementation using the Oracle replication utilities. For more information
integrating Satellite Forms with Oracle Lite, see the Oracle Lite user
manuals.

• Enable filter wildcard value: Check this box and type the desired wildcard
values into the associated text box to set a wildcard value for filters. This
value can be characters, for example, * and ?, keywords, or combinations of
both as indicated by the default value: (all). For more information on using
wildcard values when setting filters, see Using table filters on page 184.

• Create Launcher Application: Check this box and select the desired icon file
by clicking the button to generate a launcher application with the selected
icon. The user can then simply tap the icon to launch the application.

MobileApp Designer Reference
MobileApp Designer menus

85

Note The option to create the launcher application applied to the PalmOS platform
only in previous versions, but with Satellite Forms 8 it now applies to both the Palm
OS and Pocket PC platforms. For full details, see Create and assign application icons
on page 244.

• B&W File: Type the name of the black-and-white icon file for the launcher
application in this box or click the button to browse for the desired icon
file. The color icons will be found automatically based on a special naming
convention. All icon files must be Windows.BMP format graphics files.

• Backup: Check this box to set the file properties so that Palm Hotsync
makes a backup of the launcher application.

• Invisible: Check this box to make the launcher application icon invisible on
the handheld device.

MobileApp Designer View menu
The View menu allows you to specify which tools appear in the MobileApp Designer
window and to set preferences that apply to the MobileApp Designer IDE.

Figure 5.14 MobileApp Designer View menu

The View menu contains the following options:

• Show Scripts: Displays the Application Scripts window on the desktop with the
last selected script open.

• Extensions...: Displays the Available Extensions dialog box, as shown in
Figure 5.15, from which you can select the extension(s) to add to or remove from
the current project by checking or clearing the check box to the left of each
extension name. Extensions are programs that provide added functionality or
additional controls to your applications. See Satellite Forms API Reference, on
page 467 for more information on extensions.

When you have finished adding or removing extensions, click the OK button to
close the Available Extensions dialog box. Click the Cancel button to close the
dialog box without making any changes to the extensions in the current project. To
view information about the currently selected extension, click the Properties...
button.

Satellite Forms 8
Development Guide

86

Figure 5.15 Available Extensions dialog box

• Control Palette: Shows/hides the Control Palette toolbar.

• General Toolbar: Shows/hides the General toolbar.

• Project Contents: Shows/hides the Workspace palette.

• Propertyspace: Shows/hides the Propertyspace palette.

• Misc Toolbar: Shows/hides the Misc toolbar.

• Status Bar: Shows/hides the MobileApp Designer status bar.

• Preferences...: Displays the MobileApp Designer Preferences dialog box, which
allows you to set preferences for the MobileApp Designer IDE. An example is
shown in the following figure:

MobileApp Designer Reference
MobileApp Designer menus

87

Figure 5.16 MobileApp Designer Preferences dialog box

• File/Save command: Sets table regeneration options when you save a project.
Click the desired option.

• Always regenerate tables: Regenerates all tables in the current project
every time you save the project, whether MobileApp Designer or another
application altered the tables or not. If another application modified any of
the tables in the current project, all of those changes are lost when you save
the project. For this reason, this is not the recommended option.

• Regenerate if untouched, otherwise prompt: Regenerates all unmodified
tables in the current project, but prompts you to regenerate tables another
application modified, every time you save the project. If you choose to have
MobileApp Designer regenerate the tables, all of the changes the other
application made to the tables are lost. This option prevents accidental loss
of table schema or data changes made outside of MobileApp Designer and is
the recommended option.

• Engine Extensions: Sets Extensions options for the MobileApp Designer IDE.
Check either or both boxes.

• Enable Control Tips: Displays a tooltip with information about a control on
a form when you hover the mouse cursor over the control.

• Enable Extension Developer mode: Sets up the MobileApp Designer IDE
to develop custom C-language Extensions for Satellite Forms applications.
More information on third-party extension features can be found on the
Satellite Forms web site at http://www.satelliteforms.net.

www.SatelliteForms.net

Satellite Forms 8
Development Guide

88

• Bitmap Controls: Sets the display behavior of controls that contain bitmaps.
Click the desired option.

• Display Black White Image: Displays all bitmap controls as black-and-
white (two-color) bitmaps.

• Display Highest Available Color Image: Displays all bitmaps controls at
the greatest color depth available. The bitmaps you attach to a control
determines the maximum available color depth.

• File/Open command: Set options for when you open a project.

• Restore workspace when project loaded: The default behaviour (when this
option is checked) is to open up the form, script, and table editor windows in
the MobileApp Designer desktop that were open when the project was last
saved. In some rare cases, when numerous form and table editor windows
were open when the project was saved and MobileApp Designer tries to
open them all back up when the project is loaded, low memory errors may
occur on the PC. In this instance, the best approach is to uncheck this option,
so that MobileApp Designer does not automatically try to reopen all of the
windows when the project is loaded. You can then save the project again
with no windows open, and restore this option to the default setting if
desired.

MobileApp Designer Handheld menu
The Handheld menu allows you to send information to or retrieve information from a
handheld device.

Figure 5.17 MobileApp Designer Handheld menu

The Handheld menu contains the following options:

• Download App & Tables...: Downloads the current application and its tables to a
handheld device. The F5 hotkey is assigned to this function.

• Include Extensions in Download: When checked, downloads all extensions in
the application to the handheld device. This menu option is only available if you
have added one or more extensions to the current project. This option is checked
by default if you have not downloaded the current application. Extensions only
need to be downloaded one time unless you change the extension or its properties.

• Upload Tables...: Uploads an application’s tables from the handheld device to the
development computer, where MobileApp Designer can access them.

• Get User Info...: Retrieves and displays the User Name and User ID of the
handheld device currently in the cradle (this feature applies to PalmOS devices
only). The User Name is the standard HotSync User Name. See the handheld

MobileApp Designer Reference
MobileApp Designer menus

89

device user manual for more information. The Satellite Forms software creates a
unique numeric User ID the first time Satellite Forms synchronizes with the
handheld device. The User Name and User ID are most often used by your
desktop DBMS to identify the handheld currently being synchronized. See
Integrating with your Database, on page 195.

MobileApp Designer Build menu
The Build menu allows you to compile scripts and applications and set build options
for the current project.

Figure 5.18 MobileApp Designer Build menu

The Build menu contains the following options:

• Compile Script: This option is available when a script is open in the Application
Scripts window. Select this option or press Ctrl + F7 to compile the open script.

• Rebuild All: Rebuilds the current project for the selected application target. The
selected application target is shown in the Select Target combo box on the Misc
toolbar, as shown in Figure 5.28 on page 97.

• Batch Build: Displays the Batch Build dialog box, which allows you to build one
or more of the application targets defined in the current project. For example, if
you have defined application targets for Palm and Pocket PC, check the box to the
left of the targets you want to build and click the Build button. Click the Build All
button to build all defined application targets, whether checked or not. And
example Batch Build dialog box is shown in the following figure:

Figure 5.19 Batch Build dialog box

Satellite Forms 8
Development Guide

90

• Targets...: Displays the Targets dialog box, which shows the application targets
defined for the current project and allows you to add, delete, or edit application
targets. Each of these functions is described below. When you are finished using
this dialog box, click the Close button. An example Targets dialog box is shown in
the following figure:

Figure 5.20 Targets dialog box

• Add...: Click this button to add a new application target to the current project.
When you add a new application target, all forms, controls, tables, and other
project elements are added to the new target. All you have to do is build the
new target to have an application for that platform. When you are finished
using the Add Target dialog box, click the OK button to save all changes or
click the Cancel button to close without saving your changes. An example of
the Add Target dialog box appears in the following figure:

Figure 5.21 Add Target dialog box

• Target Name: Type the name of the target in this edit box. The target name
cannot duplicate a name already defined in the current project. The default

MobileApp Designer Reference
MobileApp Designer menus

91

name is the platform name plus a numeric identifier to make it unique in the
current project.

• Platform: Select the desired handheld device platform from the drop list.
Only platforms for which MobileApp Designer can build applications appear
in this list.

• Copy environment from: Select the platform type from which to copy the
environment for the new application target. Only platforms for which
MobileApp Designer can build applications appear in this list.

• Remove: Removes the target selected in the Targets dialog box from the
current project. Mobile AppDesigner prompts you before removing the selected
target.

• Edit: Allows you to edit the name of the target selected in the Targets dialog
box. Changing the name of the target does not change the platform or any other
property of the target. When you are finished editing the target name, click the
OK button to save all changes or click the Cancel button to close without
saving your changes. An example Edit Target dialog box appears in the
following figure:

Figure 5.22 Edit Target dialog box

• Options...: Displays the Code Options dialog box, which allows you to set
options that control how MobileApp Designer code works on handheld devices.
Click the Restore Defaults button to reset all options to the default values. When
you are finished editing the code options, click the OK button to save all changes
or click the Cancel button to close without saving your changes. An example
Code Options dialog box is shown in the following figure:

Satellite Forms 8
Development Guide

92

Figure 5.23 Code Options dialog box

• OnChangeDelay: Sets the delay between the end of Graffiti input to the firing
of the OnChange event in increments of one-tenth of a second. The default
setting is 20, which equals two seconds.

• Memory Usage: The three items in this group set memory usage options.

• Max Number of global + local variables per script: Sets the maximum
number of global and local variables per script.

• Size of Evaluation Stack: Sets the size of the evaluation stack.

• Max Call Depth: Sets the maximum call depth.

MobileApp Designer Window menu
The Window menu allows you to select and arrange the open windows on the
MobileApp Designer desktop.

Figure 5.24 MobileApp Designer Window menu

The Window menu contains the following options:

• Cascade: Cascades all open windows on the desktop.

• Tile: Tiles all open windows on the desktop.

MobileApp Designer Reference
MobileApp Designer toolbars

93

• Arrange Icons: Moves the icons of minimized windows to the bottom of desktop.

• Open windows list: Click the desired window name to bring it to the front and
make it active. The currently active window has a check mark to the left of its
name in this list.

MobileApp Designer Help menu
The Help menu provides access to online help for and information about MobileApp
Designer.

Figure 5.25 MobileApp Designer Help menu

The Help menu contains the following options:

• Help Topics: Displays the main online help window for MobileApp Designer.
For information on using online help, click the Start button on the Windows
Taskbar and click Help.

• SF MobileApp Guide: Displays the Satellite Forms MobileApp Guide PDF
document in Adobe Acrobat.

• SF KnowledgeBase: Opens the Satellite Forms KnowledgeBase, a searchable
help file containing known problems and solutions, as well as How-To guides for
Satellite Forms. The KnowledgeBase is also available online on the Satellite
Forms website.

• SF Solutions Guide: Opens the Satellite Forms Solutions Guide, a searchable
help file collection of numerous solutions for Satellite Forms developers,
organized into various categories. The Solutions Guide is also available online on
the Satellite Forms website.

• About MobileApp Designer...: Displays the About box, which displays the
Satellite Forms MobileApp Designer version and build numbers and copyright
notice. If you need to contact technical support, be sure you have the build and
version numbers handy.

MobileApp Designer toolbars
MobileApp Designer includes three dockable toolbars that provide one-click shortcuts
to most common tasks. You can drag any of the toolbars off the MobileApp designer
window and drop them anywhere on your Windows desktop. Whenever MobileApp
Designer is the active application, the undocked toolbars are visible. If you prefer to
dock a toolbar, drag it to the desired location just below the menu bar and drop it
there. You can arrange the three toolbars in any order, in one or more rows. Note that

Satellite Forms 8
Development Guide

94

it is possible that you may not be able to see all of the icons on all of the toolbars in
their default layout, depending on your desktop PC screen size. If you can only see
some of the icons on the right-most toolbar, for example, drag that toolbar down to the
next row, or along the left side of the MobileApp Designer window, so that all of the
icons are visible. You should be able to see all of the toolbar icons that are present in
the sample images below.

Tip Hover the mouse cursor over a toolbar button to display the name of the button in
a tooltip and a description of the what the button does in the status bar.

General toolbar
Several MobileApp Designer File and Edit menu options are available on the General
toolbar, as shown in the following figure:

Figure 5.26 MobileApp Designer General toolbar (undocked)

The following table lists and describes the MobileApp Designer General toolbar
buttons:

Table 5.9 MobileApp Designer General toolbar buttons

 Button Description

New Project: Opens a new Satellite Forms project.

Open: Displays a standard file Open dialog box that allows you to open an existing
project.

Save: Saves the current project. If the current project is new and you have not saved
it, MobileApp Designer opens the Save As dialog box, which allows you name the
project and select the directory in which to save it.

Print: Displays the standard Print dialog box, which allows you to set printing options
and to print the current form.

Cut: Cuts the selected item from the project and places it on the clipboard. If you
select multiple items, all are cut to the clipboard. You can paste items from the
clipboard into the same project or into a different project.

Copy: Copies the selected item and places it on the clipboard. If you select multiple
items, all are copied to the clipboard. You can paste items from the clipboard into the
same project or into a different project.

Paste: Pastes the item from the clipboard into the current project. If the clipboard
contains multiple items, all are pasted into the current project. You can paste items
from the clipboard into the same project or into a different project.

Delete: Deletes the selected item from the project. Some items, such as scripts,
allow you to select Undo to restore the most recent deletion. Controls and most other
items do not.

Undo: Reverses the preceding action, for example, restoring the most recent
deletion from a script. This button is available only if the preceding action can be
undone.

MobileApp Designer Reference
MobileApp Designer toolbars

95

MobileApp Designer Control Palette toolbar
The Control Palette toolbar provides access to all of the controls you can place on
forms or in applications. Click the desired control button to place that control on the
current form, then position the control on the form by dragging it or by setting the
Dimensions properties in the Propertyspace palette. An example Control Palette
toolbar is shown in the following figure:

Figure 5.27 MobileApp Designer Control Palette toolbar (undocked)

The following table lists and describes the MobileApp Designer Control Palette
toolbar buttons:

.

Redo: Repeats the preceding action, for example, restoring the portion of a script
removed with the Undo button. This button is available only if the preceding action
can be re-done.

Find: Applies only to scripts. Displays the Find dialog box, which allows you to
specify the text to search for in the current script and other search options. See
Figure 5.10 on page 81 for an example Find dialog box.

Find in Project: Applies only to scripts. Displays the Find in Project dialog box,
which allows you to specify the text to search for in all scripts in the current project
and other search options. See Figure 5.11 on page 81 for an example Find in Project
dialog box.

Help: Displays the main online help window for MobileApp Designer. For information
on using online help, click the Start button on the Windows Taskbar and click Help.

Table 5.9 MobileApp Designer General toolbar buttons (Continued)

Table 5.10 MobileApp Designer Control Palette toolbar buttons

Button Description

Title Control: Each form or page can only have one Title control.

Text Control: The handheld device cannot change the text a Text control displays.
Use Text controls to label other controls.

Edit Control: Displays and optionally edits a specific field from the current record of
the form’s linked table in a single line.

Paragraph Control: Works exactly like an Edit control except that it allows the data to
occupy multiple lines.

Check Box Control: Displays and optionally edits a True/False field from the current
record of the form’s linked table: checked equals a field value of True, cleared equals
a field value of False.

Radio Button Control: Works like a Check Box control except that the selection in a
group of controls bound to the same table field is mutually exclusive. Radio Button
controls can display and edit Numeric fields.

Satellite Forms 8
Development Guide

96

For more information on using controls and setting control properties, see Using
controls on page 124.

Button Control: Performs an action, such as jumping to another form, returning to the
previous form, or creating a new record.

List Box Control: Displays multiple records from one or more columns of data from
the table linked to a form.

Drop List Control: Displays a list of items from which a user can choose. A Drop List
control is the space-saving equivalent of a Lookup control.

Lookup Control: Displays a list of items from which a user can choose. Use Lookup
controls to display information in a user-friendly format by using a linked lookup table
to retrieve information from another table that contains the user-readable data.

Ink Control: Allows you to collect signatures or sketches from the handheld device.
The drawing or signature created in the Ink control is compressed and saved in the
Binary field designated as the control’s data source.

Bitmap Control: Places a bitmap on a form. Use this control to add pictures, logos,
and other interesting visual touches to your forms.

Graffiti Shift Indicator Control: Places an indicator graphic on the handheld device’s
screen that shows the shift status of the Graffiti handwriting recognizer. This control
displays different symbols for lowercase, shifted, or caps lock Graffiti mode. It is not
available for Pocket PC applications.

Auto Stamp Control: Automatically enters a date or time stamp in a field. Display the
time/date stamp by adding an Edit control linked to the same data source as the Auto
Stamp control.

SFX Custom Control: Inserts an SFX Custom control in a form. This button is only
active if an SFX Extension has been added to the current project.

Table 5.10 MobileApp Designer Control Palette toolbar buttons (Continued)

MobileApp Designer Reference
MobileApp Designer toolbars

97

MobileApp Designer Misc toolbar
Several MobileApp Designer View, Handheld, and Build menu options are available
on the Misc toolbar, as shown in the following figure:

Figure 5.28 MobileApp Designer Misc toolbar

The following table lists and describes the MobileApp Designer Misc toolbar buttons:

Table 5.11 MobileApp Designer Misc toolbar buttons

 Button Description

Manage Extensions: Displays the Available Extensions dialog box, as shown in
Figure 5.15 on page 86, for an example and more information.

Show Scripts: Displays the Application Scripts window on the desktop. See
Chapter , Satellite Forms Scripting Language Reference, on page 257 for more
information.

Compile Script: Compiles the open script. This button is available only when a
script is open in the Application Scripts window.

Rebuild All: Rebuilds the current project for the selected application target. The
selected application target is shown in the Select Target drop-list.

Download App & Tables: Downloads the current application and its tables to a
handheld device.

Upload Tables: Uploads an application’s tables from the handheld device to the
development computer where MobileApp Designer can access them.

Select Target: Sets the application build target for the project. A project can contain
multiple application targets, each of which can have its own forms, controls,
properties, and other properties.

Satellite Forms 8
Development Guide

98

Creating your Application
Planning your application

99

Chapter 6
Creating your Application

This chapter lists and describes steps required for developing your Satellite Forms
application. It is organized into the following sections:

• Planning your application: Advice about the planning stage of a Satellite Forms
application.

• Overview: phases of application development: A brief description of the three
phases of Satellite Forms application development.

• Creating and editing forms: Instructions for creating forms using MobileApp
Designer.

• Using controls: Definitions and descriptions of all available controls.

This chapter assumes you are familiar with the MobileApp Designer application.
Refer to Overview, on page 39 and MobileApp Designer Reference, on page 67 for a
review if needed. Many of the concepts involved in creating an application are also
illustrated in detail in Sample Application: Work Order, on page 527.

Planning your application
A Satellite Forms application is a collection of tables and forms designed to allow
users to browse existing information, collect new information, or both.

It is important to think through a proposed application before starting a project. You
should clearly define the purpose and the information requirements of the application
before you start working with MobileApp Designer to create the tables and forms. If
you complete the planning task before you create forms and tables, you will do less
backtracking and redesigning and the completed application will function in a manner
that facilitates, complements, and enhances the end-users’ performance.

Elements of good
planning:

A well planned application typically addresses each of the following elements:

• End user requirements: who will use your application, and for what purpose?

• Application requirements: what does the application need to do?

• Application design: how will the application satisfy the requirements?

• Application development: how will the application be implemented?

• Application testing: does the application work as planned?

Satellite Forms 8
Development Guide

100

• Deployment and maintenance: how will the application be delivered to end users
and maintained after deployment?

You should always clearly define the data to be accessed by end users, the information
to be collected and merged into the database, and the forms to be built with
MobileApp Designer. Careful planning makes it possible to design compact, concise
forms that make the most of the handheld device’s screen size. Although it is possible
to create forms that are many pages long, in general a short, concise form will result in
a more effective application.

You must also decide how data should move between handheld devices and your
database. If you divide your application into several efficient pieces, information
moves more smoothly. For example, on the desktop, Microsoft Outlook is one
application, similar to your desktop application or database. On the handheld, several
smaller applications replace Outlook, for example, the Palm Address Book, Calendar,
Memo Pad, To Do List, and Mail applications. Your Satellite Forms application
should be similar to these smaller applications, rather than one large application that
tries to do too much.

The four major questions
to ask when planning an

application:

When you are planning your Satellite Forms application, ask the following questions:

1 What kinds of information do end users need to access?

Sales staff would need customer account information, which may include a
customer’s location and contact information, inventory, scheduled visits, and so on.

2 What kinds of information do end users need to update or add?

Using the sales example again, this type of data might include new orders, returns,
updating inventory numbers, and so on.

3 What format is required to store the data in questions 1 and 2?

This question relates to the fields that appear in the application’s tables. These
tables contain the information described by the answers to the first two questions.
How many fields are required? What is the best way to group these fields? What
data types are needed to display or record this data?

4 What database format should you use?

Satellite Forms supports both .DBF (dBase V) and .MDB (Access) database
formats to store its transfer tables. In your project, use the Project Properties dialog
box, as shown in Figure 5.13 on page 83, to set the desktop database format to use
for each application target.

• If you are planning to use Access 2000 or later for your Palm OS applications,
you must specify .MDB as the desktop database format.

After you have planned your Satellite Forms application, you are ready to start
creating the application using MobileApp Designer.

Overview: phases of application development
This section summarizes the complete process of creating an application, integrating
the application with your database, and deploying the application to your end users.
Additional examples and instructions appear in the sample application described in

Creating your Application
Overview: phases of application development

101

Sample Application: Work Order, on page 527. If needed during development, a
complete reference for working with MobileApp Designer is provided in MobileApp
Designer Reference, on page 67.

Developing a typical Satellite Forms application can be broken into three phases:
Phase 1 – Working with MobileApp Designer, Phase 2 – Integrating applications with
your database management system, and Phase 3 – Deploying your application. A
summary of each of the three phases is provided below, followed by details on
implementing Phase 1. Phase 2 is covered in Integrating a Satellite Forms database
with a Corporate database, on page 196. Phase 3 is covered in Deploying your
Application, on page 229.

Phase 1 – Working with MobileApp Designer
In Phase 1, you use MobileApp Designer to create, configure, and test Satellite Forms
applications for handheld devices. This process consists of ten steps after a new
project has been created:

1 Create tables by adding and configuring columns (fields) and entering sample data
using the table editor. These tables hold the data to be displayed, edited, or both, on
the handheld device.

2 Create forms and associate the forms as appropriate with the tables containing the
data to be displayed or modified. These forms are the screens or pages that users
see when the application is downloaded and run on the handheld device.

3 Add controls to forms, set their properties, associate as appropriate with a specific
table column, and position them on the form.

4 Add scripts to your application to enhance its functionality. For more information,
see Satellite Forms Scripting Language Reference, on page 257.

5 Add control actions, table filters, extensions, and color to your application to
enhance its functionality. For more information, see Using Actions, Filters,
Extensions, and Color, on page 177

6 Configure your application’s properties, including the application’s name, the
initial form, and other options.

7 Create an icon image for your application.

8 Download the application and its tables to the handheld device to check the
appearance and operation of your forms and controls using the sample data you
input in Step 1. For instructions on downloading an application to a handheld, see
Installing the engine and downloading the application on page 175.

9 Upload application tables back into MobileApp Designer to make sure any updates
or new data entries made using the handheld device were transferred correctly to
the associated tables in the application. For instructions on uploading application
tables from the handheld device to MobileApp Designer, see Installing the engine
and downloading the application on page 175.

Details on creating your application are provided later in this chapter. After you have
created your application, you are ready to integrate the application with your database
management system in Phase 2.

Satellite Forms 8
Development Guide

102

Phase 2 – Integrating applications with your database management
system
Once you have completed Phase 1, you have an operational handheld device
application. Phase 2 focuses on integrating the application with your database
management system. To accomplish this integration, you must complete the following
steps:

1 Link the database tables created by Satellite Forms with the database application.

2 Write code to extract data from the database and copy it into the Satellite Forms
tables. This code prepares a table or tables to be downloaded to the handheld
device.

3 Write code to transfer data from the associated Satellite Forms database tables on
the handheld device back to the database and merge as desired.

4 Write code to handle sync events, that is, to transfer information to and from the
handheld device. This code calls the code in Steps 2 and 3 as required.

Detailed information and instructions for completing Phase 2 appear in Integrating a
Satellite Forms database with a Corporate database, on page 196.

Phase 3 – Deploying your application
After you have completed Phase 2, you have an operational handheld device
application that is integrated with your database management system. Phase 3 focuses
on distributing your application to your end users. To deploy your application, you
must complete the following steps:

1 Modify the HotSyncStatus or ActiveSync handler of your PC application.

2 Load the Satellite Forms RDK redistributable components to any computers that
will be used to install or synchronize with Satellite Forms applications onto
handheld devices.

Note You can create install disks from the provided disk images or write your own
installation program to accomplish this step.

3 Load all files associated with your application onto the PC.

4 Load all files associated with your Satellite Forms application onto any computers
that will be used to install or sync with Satellite Forms applications onto handheld
devices.

5 Load the necessary files onto handheld devices.

6 Register the Satellite Forms conduit with ActiveSync or HotSync Manager and
restart it.

7 Install the Satellite Forms engine and other files, if necessary, onto the handheld
devices.

8 Install the Satellite Forms application (forms and tables) onto handheld devices.

You can use the Satellite Forms RDK Install Utility (RDKINST.EXE for Palm OS
and CeRdkInst.EXE for Pocket PC) to simplify the loading of the necessary files onto

Creating your Application
Phase 1: Working with MobileApp Designer

103

handheld devices. Detailed information and instructions for completing Phase 3
appear in Deploying your Application, on page 229.

Phase 1: Working with MobileApp Designer
This section contains detailed instructions and information about Phase 1 of
developing your Satellite Forms application. It assumes that you know how to open a
new project and perform basic functions with MobileApp Designer. Refer to
Overview, on page 39 or MobileApp Designer Reference, on page 67 if needed during
development.

You will complete the following steps in Phase 1:

1 Work with tables.

2 Create and edit forms.

3 Create menus you want to appear in your application.

4 Use controls to add functionality to your application.

5 Enhance your application’s functionality with actions, filters, extensions, and SFX
plug-ins and custom controls.

6 Configure your application’s properties.

7 Download the application to the handheld device from MobileApp Designer.

8 Upload application tables back into MobileApp Designer from the handheld
device.

Working with tables
Most applications contain tables. This section explains how to create and edit or
import tables for use when developing applications with MobileApp Designer. Like
other relational databases, Satellite Forms uses tables to store and retrieve
information. An application created with MobileApp Designer can use one or many
tables. Tables in Satellite Forms have the following requirements:

• Each table in a Satellite Forms application must have a unique name.

• Each table has rows and columns – that is, records and fields.

• Each field is labeled with a field name describing the information stored in the
field (for example, CLIENTNAME).

• Each field is assigned a specific data type that determines the characters and
format the field accepts. For example, only numbers can be stored in a numeric
field.

Satellite Forms tables support the following field data types:

• Character: Accepts any printable character: letters, numbers, and symbols.

• Numeric: Accepts numbers only, such as prices, inventory quantities, ID
numbers, and so on. Note that phone numbers, zip codes, and numbers

Satellite Forms 8
Development Guide

104

representing dates and times should not be entered into numeric fields. Use the
Character data type for phone numbers and zip codes. Dates and times have their
own corresponding data types.

• True/False: Accepts only T for true or F for false. Use for Boolean data.

• Date: Accepts only date information in MM/DD/YYYY format in MobileApp
Designer. On the handheld device, dates are displayed and entered in a country–
specific format according to the Preferences settings on the handheld device.

• Time: Accepts only time information in the HH:MM am/pm format in
MobileApp Designer. On the handheld, times are displayed and entered in a
country–specific format according to the Preferences settings on the handheld
device.

• Binary: Accepts input from an Ink control for signatures, drawings, and so on.
This data appears on the desktop computer as an OLE object.

• Time Stamp: Accepts an eight-bit integer used to establish compatibility with
imported Oracle Lite tables.

Creating a new table
To create a new table in the current project, select Edit > Insert Table from the
MobileApp Designer menu. This opens the Table dialog box with a default table and
column, as shown in the following figure.

Figure 6.1 Table dialog box

Creating your Application
Working with tables

105

Setting the table name
and database options

Type a name for this table into the Table Name edit box. This is the name by which
all objects in the current project reference the table. Check the Link table name to
filename box to have MobileApp Designer use the table name to generate the default
name of the database file created when you save the project. Change the database file
name by typing a new name in the Save As edit box, if desired.

The Backup, Read Only, and NoAutoCommit options allow you to set some special
behaviours, or attributes, for each table:

• The Backup option applies to the Palm OS platform only (it has no effect on the
Pocket PC platform whether or not it is checked) and is used to specify whether
Palm HotSync should make an extra backup copy of the table during the HotSync
process.

• The Read Only option allows you to make the table so that it cannot be modified.
The records in the table can be viewed but they cannot be changed. This option
applies to both Palm OS and Pocket PC platforms. On the Pocket PC platform,
there is a performance advantage to using read only tables, as they allow your
application to close faster than standard read/write tables. Therefore, if your
application design is such that this particular table cannot and should not be
modified on the handheld, it makes sense to ensure the Read Only option is
checked.

• The NoAutoCommit option applies to the Pocket PC platform only (it has no
effect on the Palm OS platform whether it is checked or not). This option defines a
table that behaves in some ways like a regular read/write table, and in some ways
like a read only table, and is generally considered an advanced option. The
NoAutoCommit option means that the table can be modified like a regular read/
write table, but that none of the changes to the table are saved automatically. In
order to save changes to a NoAutoCommit table, your application has to save or
“commit” those changes in script by calling the Tables(“tablename”).CommitData
method. The reasons why you might want to use this table option are explored in a
Satellite Forms KnowledgeBase article titled “How To Make PocketPC PDB
Apps Close Faster” which you can find in your locally installed KnowledgeBase
or online at http://www.satelliteforms.net/knowledgebase.htm.

Setting the table layout When you create a new table, the Layout tab on the Table dialog box contains a
single, default column. Click the column name and then click the Edit... button or
double-click the column name to display the Edit Column dialog box, as shown in the
following figure:

http://www.satelliteforms.net/knowledgebase.htm
http://www.satelliteforms.net/knowledgebase.htm
http://www.satelliteforms.net/knowledgebase.htm

Satellite Forms 8
Development Guide

106

Figure 6.2 Edit Column dialog box

Type a name for the column. Column names can be a maximum of ten characters
which must be the letters A-Z, the numbers 0-9, or the underscore character(_).
Column names should reflect the contents of the field being created and must be
unique within the same table. All objects in the current project reference the column
by this name.

Column data types Columns in Satellite Forms tables support the following data types:

• Character: Any printable character: letters, numbers, and symbols.

• Numeric: Numeric data: prices, inventory quantities, and so on.

• True/False: A standard Boolean data type. Fields of this type accept either T for
true or F for false. True/False fields are frequently linked to Check Box controls.
See Check Box control on page 136 for more information.

• Date: Dates in MM/DD/YYYY format, for example, 11/21/2003 or 5/6/2004 in
MobileApp Designer only. On the handheld device, dates are displayed and
entered in a country–specific format according to the settings in the handheld
device’s preferences panel.

• Time: Times in HH:MM AM/PM format (10:42 PM, 7:11 Am) in MobileApp
Designer only. On the handheld device, times are displayed and entered in a
country–specific format according to the settings in the handheld device’s
preferences panel.

• Binary: Ink control data format for signatures, drawings, and so on. This data
appears on the desktop computer as an OLE object after uploading data from the
handheld device.

• Time Stamp: An eight-bit integer used to maintain compatibility with imported
Oracle Lite tables.

The Character and Numeric data types require a column width setting. The column
width determines the maximum number of characters a field accepts. The column
width need not be the same as the width of the control that displays the information on
the handheld device.

• The Character data type column width must be in the range 1 to 32,767.

Creating your Application
Working with tables

107

• The Numeric data type column width must be in the range 1 to 19.

Tip To conserve space and memory, set the column widths to the smallest useful size
possible for each column.

The Numeric data type supports decimal places from 0 to 6 or floating point.

Date and time shortcuts To make the entry of dates and times on the handheld device easier, you can take
advantage of a number of shortcuts Satellite Forms provides.

Normally when you enter dates, you use the format specified in the handheld device’s
preferences. Satellite Forms applications default to the current month, year, and
century allowing you to omit these items in date entries, as appropriate.

For example, assume today is June 30, 2003 and the preferred date format on the
handheld device is MM/DD/YY. The following table illustrates the date value
Satellite Forms records for the given date value entered:

Likewise, you normally use the format HH:MM or HH:MM:SS to enter times.
Satellite Forms assumes all times are AM unless entered as PM. You can shorten AM
and PM by entering an a or a p instead. In addition, Satellite Forms applications
default to zero all missing time elements, so you can omit the seconds or minutes
portion of a time as appropriate. The following table illustrates the time value Satellite
Forms records for the given time value entered:

Adding/deleting columns To add a new column, click the New... button or double-click in the white space below
the existing columns to display the Create New Column dialog box. This dialog box
works exactly like the Edit Column dialog box, as shown in Figure 6.2 on page 106.
The default name for the new column is COL_X, where X is the next available letter.
Type a new name and set up the column’s data type and options. Click the OK button

Table 6.1 Satellite Forms date format example

Value Entered Value Recorded

5 6/5/2003

5/3 5/3/2003

5/3/80 5/3/1980

5/3/2005 5/3/2005

Table 6.2 Satellite Forms time format example

Value Entered Value Recorded

1 1 AM

1a 1 AM

1:15 a 1:15 AM

1:15 am 1:15 AM

1p 1 PM

1:15 p 1:15 PM

1:15 pm 1:15 PM

Satellite Forms 8
Development Guide

108

to add the new column to the table. Repeat this process as needed to add all necessary
columns to the table.

To delete an existing column, click the desired column and then click the Delete
button. MobileApp Designer deletes the column immediately, without prompting you
first.

Setting column order To change the order of the columns in a table, click the column you would like to
move and then click the Up or Dn button to position the column as desired. Repeat
this process until the columns are in the desired order.

Importing tables
MobileApp Designer allows you to import a database schema from an ODBC data
source. The structure of these tables, but not the data, is automatically created in the
current project. This feature saves you from having to create tables manually in
MobileApp Designer when they already exist in an ODBC data source.

Select Edit > Import Table... from the MobileApp Designer menu to start the
Import Table wizard, as shown in the following figure:

Figure 6.3 Import Table wizard, Select Plug-In step

Select the desired plug-in and click the Next > button.

The next step allows you to select the desired connection type and then a data source
based on the connection type, as shown in the following figure:

Creating your Application
Working with tables

109

Figure 6.4 Import Table wizard, ODBC Connection step, Data source selected

Select either Data source or Driver as the connection type. Depending on the option
you select, the next wizard step displays all the data sources or drivers present on your
development computer. The steps required to import a table from a data source and
from a driver are explained in the following sections. See Importing tables using a
driver connection on page 109 for instructions on using a driver connection.

Importing tables using a
data source connection

When you select Data source as the connection type, the Import Table wizard lists
available ODBC data sources. If the data source you want to use requires a login, click
the Login... button and type your user name and password. Select the desired ODBC
data source in the list and click the Next > button.

Tip If the data source you want to use is not listed, use the Windows ODBC Data
Sources Control Panel applet to define the desired data source. See Windows Help for
more information.

At this point, the process of importing a table schema from data source or a driver is
identical. See Importing the table schema on page 110 for instructions.

Importing tables using a
driver connection

When you select Driver as the connection type, the Import Table wizard lists the
ODBC drivers installed on your development computer as shown in the following
figure:

Satellite Forms 8
Development Guide

110

Figure 6.5 Import Table wizard, ODBC Connection step, Driver selected

Select the desired ODBC driver in the list and click the Next button. Use the database
driver to select the desired database or instance.

Note When you click the Next > button, the wizard accesses the selected database
driver. Since every driver is different, instructions for selecting a database file or
instance cannot be provided here. See the online help or user manuals supplied with
the database driver for more information.

Importing the table
schema

After you have selected the desired data source or driver, the next step is to select the
table whose schema you want to import, as shown in the following figure:

Figure 6.6 Import Table wizard, Select ODBC Item step

Select the desired table in the list and click the Next > button.

Creating your Application
Working with tables

111

Tip To display additional items stored in the selected ODBC data source, including
views, system tables, and aliases, click the Options... button and check the desired
options.

Check the box to the left of each field you want to import. To designate a field as a
primary key, right-click the desired field and select Primary Key from the popup
menu. Repeat this process for additional primary key fields. This option is available
only for database types that support primary keys.

Tip Click the Advanced... button to set synchronization options and a SQL SELECT
statement WHERE clause, if desired.

Figure 6.7 Import Table wizard, Select Fields step

When you are finished selecting the fields to be imported and setting the primary keys,
click the Next > button.

The next wizard step shows you the selected settings for the table to be imported as
shown in the following figure:

Satellite Forms 8
Development Guide

112

Figure 6.8 Import Table wizard, Current Settings step

Clear the check box to the left of any item that you do not want to allow the system
administrator to modify when the application is installed on the server. When you are
finished setting administration option, click the Next >button.

The final wizard step shows you the default column mapping for the table to be
imported as shown in the following figure:

Figure 6.9 Import Table wizard, Column Mapping step

If any columns are not properly mapped to their Satellite Forms equivalents, click and
drag the desired column in the right-hand column until it is aligned with the correct
Satellite Forms column and drop it there. When you are finished setting the column
mapping click the Finish button to import the selected table schema.

Creating your Application
Working with tables

113

Editing table data
After creating or importing a table, you can add or edit data as needed using
MobileApp Designer to support your development effort.

Note For instructions on changing the table layout, see Creating a new table on
page 104.

The Editor page is not intended for actual data entry into a Satellite Forms application,
aside from smaller databases such as droplist items. Your DBMS or sync server
application is much faster and more efficient for data entry. Use the Editor page to
create a few records for the application so you can test it completely on the handheld
device before moving to the integration phase.

To edit table data, click the Editor tab. Click the Insert Rows button to insert a row
above the current row. Click the Delete Rows... button to delete the current row.
MobileApp Designer prompts you to delete the selected row. An example Editor tab is
shown in the following figure:

Figure 6.10 Table dialog box, Editor tab

To place a Tab character into a cell, type \t; to insert a carriage return/line feed into a
cell, type \n.

Tip When you download the table to a handheld device, these sequences are
converted to their proper values.

Satellite Forms 8
Development Guide

114

You can also copy & paste data into the table editor instead of typing it in. To do this,
you must first create the empty rows in the table to receive the pasted data, either by
using the Insert Rows button, or just by holding down the down cursor button to create
new rows. The table you are copying from must have the same column layout, of
course. This approach works well when copying some data from a spreadsheet
program like Microsoft Excel®, for example.

Creating and editing forms
Forms provide the graphical user interface (GUI) for your applications. Forms display
information from a linked table, allow users to add or edit data, and provide other
tools that make your handheld applications both useful and easy to use.

Forms can have one or more pages, each page filling the handheld device’s screen. A
handheld application can have as many forms as needed to perform its tasks.

Tip Efficient, effective applications have as few forms and as few pages per form as
possible.

When you open a new project, MobileApp Designer places a blank form on the
desktop for you to begin working with.

To add a form to a project, select Edit > Insert Form from the MobileApp Designer
menu or right-click the Forms root icon in the Workspace palette and select Insert
Form from the context menu. To delete a form from a project, right-click the form’s
icon in the Workspace palette and select Delete Form from the context menu.

Form design window
The Form design window allows you to turn the design grid on and off and set the
zoom factor at which the form is displayed. It also displays the current position and
size of the selected control on the form.

Creating your Application
Creating and editing forms

115

Figure 6.11 Form design window

Form design grid Click the Grid on/off button on the Form design window to turn the design grid on or
off. When the grid is turned on, as shown in Figure 6.11, control edges snap to the grid
points, making it easy to position, size, and line up controls on a form.

The design grid size is five pixels, which limits the position and size of a control to
five-pixel increments. Turn off the design grid to gain finer control over the size and
position of controls on a form.

To position and line up controls without the design grid, use the keyboard arrow keys
to move the selected control one pixel in any direction. To size a control, click Ctrl +
the desired arrow key. To position, size, and line up controls with greater precision,
enter the desired values into the Propertyspace palette for each control on a form.

Form zoom factor MobileApp Designer displays all Palm OS forms at 200% of actual size by default
(for the Pocket PC platform the default zoom level is 100%). Click the arrow to the
right of the Zoom factor and select the desired percentage from the list.

Control origin and size
indicators

The control origin is the x,y location, in pixels, of the control’s upper left corner on the
form. The control size is its width and height in pixels. Whenever you select a control
on a form, these coordinates appear on the form’s toolbar, as shown in Figure 6.11 on
page 115.

Design Grid
on/off

Zoom factor Control left/top
origin

Control
width/height

Satellite Forms 8
Development Guide

116

Form properties
Each form has a series properties that determine its base behavior. These properties set
the form’s name, length, associated table, and permissions.

Propertyspace palette To set form properties, click the open area of the desired form. Make sure you do not
click a control on the form. The form’s properties appear in the Propertyspace palette.
The Propertyspace palette displays the properties of the selected form or control in a
dockable pane.

The left-hand column displays a check box that indicates whether the property is
identical for all application targets in the project. The left-hand column only appears if
the current project has more than one application target defined. An example of a
property value that would not be shared between application targets is the position of a
control on a form. The position would be different for Palm and Pocket PC application
targets because of the different screen sizes of the two platforms. If a property has the
target check box checked, and you change that property, that setting is changed for all
targets. If you want to make a change to this target only, leaving any other targets
unchanged, uncheck the target column and then change the property setting. If you
want to revert back to the default setting across all targets, re-check the target column
for that property.

The center column, or left-hand column if the current project has just one application
target, displays the property. The right-hand column displays the setting for each
property. Some settings provide combo boxes from which you can select a valid
value.

Figure 6.12 Propertyspace palette (undocked) showing Form properties

To dock the Propertyspace palette, drag the window to the desired edge of the
MobileApp Designer main window and drop it there. To undock the Propertyspace

Creating your Application
Creating and editing forms

117

palette, drag the top of the palette to the center of the desktop and drop it there. The
Propertyspace palette works like an ordinary window on the desktop.

Form properties
The properties available for a form are listed in the following table:

Tip For more information on setting appropriate permissions, see Optimizing user
permissions on page 560.

Table 6.3 Form properties

Property Value

(Form) The name of the form. Other forms in the
current project refer to the form by this name.
Type the desired name.

Number of Pages The number of pages defined for the current
form. Each page is linked to the form’s table.
Use the spin buttons to set the desired number
of pages.

Menubar Select the name of the Menubar for this form.
You cannot select this value before adding a
menu to the project.

Table Select the name of the table to link to this form.
You cannot select this value before adding or
importing a table into the project.

Permissions: Create • True: Slow users to add new records to the
linked table.

• False: Prevent users from adding new
records to the linked table.

Permissions: Delete • True: Allow users to delete records from the
linked table.

• False: Prevent users from deleting records
from the linked table.

Permissions: Delete Last • True: Allow users to delete the last (only)
record in the linked table, leaving the table
empty.

• False: Clears the last record, but does not
delete the last (only) record from the linked
table.

Permissions: Modify • True: Allow users to modify existing records
in the linked table.

• False: Prevent users from modifying
existing records in the linked table.

Permissions: Navigate • True: Allow users to navigate between
records in the linked table.

• False: Prevent users from navigating
between records in the linked table.

Satellite Forms 8
Development Guide

118

Working with menus
Applications use menu options to provide added functionality or alternative means of
accessing features. Menu Items and Button controls provide the same types of
features, including actions and table filters. MobileApp Designer provides a complete
set of menu-building tools.

Working with Menubars
A Menubar is a top-level component on a menu that holds menu items. To add a
Menubar to a project, select Edit > Insert Menubar from the menu or right-click the
Menus root icon in the Workspace palette and select Insert Menubar from the
context menu. To delete a form from a project, right-click the Menubar’s icon in the
Workspace palette and select Delete Menubar from the context menu.

Menubar properties
This section describes the properties available for Menubars.

Note The Menubar Name property of MobileApp Designer Menubars cannot
contain spaces. Use underscores instead of spaces for this property.

The Propertyspace palette for a Menubar is shown in the following figure:

Figure 6.13 Menubar Propertyspace palette

The properties available for a Menubar are listed in the following table:

Table 6.4 Menubar properties

Property Value

(Menubar) The name of the Menubar. The current project refers to the Menubar by
this name. Type the desired name.

Edit Menus Click this button to add or edit the Menus associated with the selected
Menubar, as described in the following section.

Target check box The left-hand column displays a check box that indicates whether the
property is identical for all application targets in the project. If the check
box is checked, the property setting applies to all targets, and if it is not
checked, the property setting applies to this target only. The target check
box column only appears if the current project has more than one
application target defined.

Creating your Application
Working with menus

119

Adding or editing Menus The Edit Menubar dialog box, as shown in the following figure, allows you to add or
edit Menus attached to the selected Menubar.

Figure 6.14 Edit Menubar dialog box

• Menus list: Displays the Menus currently attached to the selected Menubar. Click
the desired Menu to edit or delete it.

• Add... button: Adds a new Menu to the selected Menubar using the Menu
Properties dialog box, as shown in Figure 6.16 on page 121.

• Edit... button: Edits the Menu selected in the Menus list using the Menu
Properties dialog box, as shown in Figure 6.16 on page 121.

• Delete button: Deletes the Menu selected in the Menus list. MobileApp Designer
does not prompt you to delete the selected Menu.

• Up/Dn buttons: To change the order of the Menus on the selected Menubar, click
the Menu you would like to move and then click the Up or Dn button to position
the Menu as desired. Repeat this process until the Menus are in the desired order.

Click the OK button to save all changes to the Menus in the selected Menubar. Click
the Cancel button to close the Edit Menubar dialog box without saving changes to the
selected Menubar.

Menu Properties
This section describes the properties available for Menus.

Note The Menu Name property of MobileApp Designer Menus cannot contain
spaces. Use underscores instead of spaces for this property.

The Propertyspace palette for a Menu is shown in the following figure:

Satellite Forms 8
Development Guide

120

Figure 6.15 Menu Propertyspace palette

The properties available for a Menu are listed in the following table:

Adding or editing Menu
Items

The Edit Menu Items dialog box, as shown in the following figure, allows you to add
or edit Menus attached to the selected Menubar.

Table 6.5 Menu properties

Property Value

(Menu) The name of the Menu. The current project refers to the Menu by this
name. Type the desired name.

Menubar Read-only. Displays the name of the Menubar to which this Menu is
attached.

Edit Menu • True: The selected Menu is an OS-defined Edit menu. You cannot
edit any other properties if you set this property to True.

• False: The selected Menu is a custom menu.

Edit Menu Items Click this button to add or edit the Menu Items associated with the
selected Menu, as described in the following section.

Target check box The left-hand column displays a check box that indicates whether the
property is identical for all application targets in the project. If the check
box is checked, the property setting applies to all targets, and if it is not
checked, the property setting applies to this target only. The target check
box column only appears if the current project has more than one
application target defined.

Creating your Application
Working with menus

121

Figure 6.16 Menu Properties dialog box

• Menu Items list: Displays the Menu Items currently attached to the selected
Menu. Click the desired Menu Item to edit or delete it.

• Add... button: Adds a new Menu Item to the selected Menu using the Menu Item
Properties dialog box, as shown in Figure 6.17 on page 122.

• Edit... button: Edits the Menu Item selected in the Menu Items list using the
Menu Item Properties dialog box, as shown in Figure 6.17 on page 122.

• Delete button: Deletes the Menu Item selected in the Menu Items list. MobileApp
Designer does not prompt you to delete the selected Menu Item.

• Up/Dn buttons: To change the order of the Menu Items on the selected Menu,
click the Menu Item you would like to move and then click the Up or Dn button to
position the Menu Item as desired. Repeat this process until the Menu Items are in
the desired order.

Click the OK button to save all changes to the Menu Items in the selected Menu. Click
the Cancel button to close the Menu Properties dialog box without saving changes to
the selected Menu.

Satellite Forms 8
Development Guide

122

Figure 6.17 Menu Item Properties dialog box

• Caption: The text that appears on the Menu Item. Type the desired text.

• Shortcut: Shortcut key or keys for the selected Menu Item. Type the desired
shortcut.

• Separator: When checked, designates this Menu Item as a separator line between
groups of Menu Items, rather than an active Menu Item. You cannot set any other
properties for the Menu Item if you check this box.

• Action when Clicked: Displays the action or filter for the Menu Item. See Setting
up actions on page 177 for more information.

• Edit: Click this button to set the desired action or filter for the Menu Item. See
Setting up actions on page 177 for more information.

Creating your Application
Working with menus

123

Menu Item Properties
This section describes the properties available for Menu Items.

Note The MenuItem Name property of MobileApp Designer Menu Items cannot
contain spaces. Use underscores instead of spaces for this property.

The Propertyspace palette for a Menu Item is shown in the following figure:

Figure 6.18 Menu Item Propertyspace palette

The properties available for a Menu Item are listed in the following table:

Table 6.6 Menu Item properties

Property Value

(MenuItem) The name of the Menu Item. The current project refers to the Menu Item
by this name. Type the desired name.

Menu Read-only. Displays the name of the Menu to which this Menu Item is
attached.

Shortcut Shortcut key or keys for the selected Menu Item. Type the desired
shortcut.

Separator • True: The Menu Item is a separator – a line dividing groups of Menu
Items – not an active Menu Item.

• False: The Menu Item is not a separator, but is instead an active
Menu Item.

Action Displays the action or filter for the Menu Item. See Setting up actions
on page 177 for more information.

Edit Action Click this button to set the desired action or filter for the Menu Item. See
Setting up actions on page 177 for more information.

Satellite Forms 8
Development Guide

124

Using controls
This section describes the available controls and their properties. Controls provide a
wide range of functionality to your applications. All controls are associated with
forms, although not all controls are visible on a form when the application is running
on the handheld device.

The Control Palette toolbar, as shown in Figure 5.28 on page 97, provides one-click
access to all of the available controls. The Control Palette toolbar becomes active
whenever you select a form on the MobileApp Designer desktop.

To add a control to the selected form, click the desired button on the Control Palette
toolbar. MobileApp Designer places the new control in the upper left-hand corner of
the form, overlaying any control already in that position. Drag the new control to a
different location to reveal the previously inserted control.

When you add a control to a form, an icon appears in the Workspace palette under the
associated form’s icon. Click a control to display its properties in the Propertyspace
palette.

Working with controls
MobileApp Designer provides a variety of convenient ways of working with controls
so that you can build applications that make efficient use of screen space and are
efficient and easy to use.

To position a control on a form:

• Click and drag the control to the desired location on the form.

• Click the control you want to move and click the arrow keys on the keyboard to
move it to the desired position.

• Click the control you want to position on the form and edit its Top and Left
properties in the Propertyspace palette.

To set the size of a control:

• Click and drag the appropriate grapples until the control is the desired size.
Grapples are the small black squares around the edge of the selected control.

• Click the control you want to resize and press Ctrl + the appropriate arrow key.
The control’s dimensions change by one pixel each time you press an arrow key.

• Click the control you want to resize and edit its Width and Height properties on
the Propertyspace palette.

Target check box The left-hand column displays a check box that indicates whether the
property is identical for all application targets in the project. If the check
box is checked, the property setting applies to all targets, and if it is not
checked, the property setting applies to this target only. The target check
box column only appears if the current project has more than one
application target defined.

Table 6.6 Menu Item properties (Continued)

Property Value

Creating your Application
Using controls

125

To set the z-order (stacking order) of two or more overlapping controls:

Click the desired control and then select Edit > Bring Control to Front or Edit >
Send Control to Back. For more information, see MobileApp Designer menus on
page 78.

To cut, copy, or delete one or more controls on a form:

• Click the desired control and then select Edit > Cut Control, Edit > Copy
Control, or Edit > Delete Control. To cut, copy, or delete two or more controls
on a form, press and hold the Ctrl key and click the desired controls. Then select
the desired option from the Edit menu as usual. For more information, see
MobileApp Designer menus on page 78.

To paste one or more controls from the clipboard onto a form:

• Click the form onto which you want to paste the control(s) on the clipboard and
select Edit > Paste Control. For more information, see MobileApp Designer
menus on page 78. Position and size the controls on the form as described above.

Control Properties
This section describes the properties available for each control MobileApp Designer
provides.

Note The Control Name property of MobileApp Designer controls cannot contain
spaces. Use underscores instead of spaces for this property.

Title control properties
The title control displays a title across the form or page, as shown in the following
figure:

Satellite Forms 8
Development Guide

126

Figure 6.19 Form with Title control

Note The position of the Title control is fixed at the top of the form or page.

Creating your Application
Using controls

127

The Propertyspace palette for a Title control is shown in the following figure:

Figure 6.20 Title control Propertyspace palette

The properties available for a Title control are listed in the following table:

Text control Text controls display static text on a form, as shown in the following figure:

Table 6.7 Title control properties

Property Value

(Title) The name of the control. The current project refers to the control by
this name. Type the desired name.

Text The text that the Title control displays on the form or page. The
display name of the form or page. Type the desired name.

Target check box The left-hand column displays a check box that indicates whether the
property is identical for all application targets in the project. If the
check box is checked, the property setting applies to all targets, and
if it is not checked, the property setting applies to this target only. The
target check box column only appears if the current project has more
than one application target defined.

Satellite Forms 8
Development Guide

128

Figure 6.21 Form with Text control

Tip Use Text controls to label other controls, such as Edit and Paragraph controls, or
to provide instructions on using a form or page.

Creating your Application
Using controls

129

The Propertyspace palette for a Text control is shown in the following figure:

Figure 6.22 Text control Propertyspace palette

The properties available for a Text control are listed in the following table:

Table 6.8 Text control properties

Property Value

(Text) The name of the control. The current project refers to the control by
this name. Type the desired name.

Text The text that the control displays on the form or page. Type the
desired text.
Note: Depending on the font you select for a Text control, the Text
property may hold more characters than the handheld device can
display. Use the appearance of the Text control in the Form design
window as a guide to the maximum number of characters you can
enter in a Text control.

Find Char Click this button to display a table of the characters in the selected
font. Click the character you want to insert at the carrot position in the
Text property. Use this button to insert symbol characters into the
Text property.

Attributes: Font Sets the font for the control. Select the desired font from the drop list.

Attributes: Visible • True: The control is visible on the form.

• False: The control is not visible on the form.

Satellite Forms 8
Development Guide

130

Tip The Width and Height properties are set automatically based on the Font and
Text properties.

Edit control
An Edit control, as shown in the following figure, displays the contents of the
specified column for the current record of the form’s linked table.

Figure 6.23 Form with Edit control

Dimensions: Left The left origin (in pixels) of the control. Type the desired value.

Dimensions: Top The top origin (in pixels) of the control. Type the desired value.

Target check box The left-hand column displays a check box that indicates whether the
property is identical for all application targets in the project. If the
check box is checked, the property setting applies to all targets, and
if it is not checked, the property setting applies to this target only. The
target check box column only appears if the current project has more
than one application target defined.

Table 6.8 Text control properties (Continued)

Property Value

Creating your Application
Using controls

131

The Propertyspace palette for an Edit control is shown in the following figure:

Figure 6.24 Edit control Propertyspace palette

The properties available for an Edit control are listed in the following table:

Table 6.9 Edit control properties

Property Value

(EditText) The name of the control. The current project refers to the control by
this name. Type the desired name.

Data Source: Column The name of the column (field) in the form’s linked table to which this
control is linked. This attribute is not available if the form on which it is
placed does not have a linked table. Select the desired column from
the list.

Attributes: Font Sets the font for the control. Select the desired font from the list.

Attributes: Alignment Sets the text justification for the control. Select Left or Right from the
list.

Satellite Forms 8
Development Guide

132

Tip When the Satellite Forms Engine displays a form, it places the cursor on the
front-most Edit or Paragraph control on the form. To specify a particular Edit or
Paragraph control as the front-most control on the form, select the control and then
select Edit > Bring Control to Front from the MobileApp Designer menu.

Attributes: AutoKeyboard Sets the auto keyboard option for the control. Select the desired
option from the list. This attribute has five possible values:

• Off: When the user taps the edit control, no special handheld
keyboard appears.

• Auto: When the user taps the edit control, the appropriate
handheld keyboard for the control’s data source appears.

• Character: When the user taps the edit control, the character
handheld keyboard appears.

• Numeric: When the user taps the edit control, the numeric
handheld keyboard appears.

• Time: When the user taps the edit control, the time entry
handheld keyboard appears.

Attributes: Underlined • True: Text typed into control is underlined.

• False: Text typed into control is not underlined.

Attributes: Visible • True: The control is visible on the form.

• False: The control is not visible on the form.

Attributes: Read-Only • True: The user cannot modify the text in the control.

• False: The user can modify the text in the control.

Attributes: Don’t Modify
Table

• True: The user cannot modify the data in the linked column using
this control.

• False: The user can modify the data in the linked column using
this control.

Attributes: Auto Shift • True: The first character the user enters into the control is
automatically capitalized.

• False: The shift status of the first character the user enters into
the control is not altered.

Attributes: Input Required • True: The user cannot move to the next record or to another form
before entering data into the control.

• False: The user is not required to enter data into the control.

Dimensions: Left The left origin (in pixels) of the control. Type the desired value.

Dimensions: Top The top origin (in pixels) of the control. Type the desired value.

Dimensions: Width The width (in pixels) of the control. Type the desired value.

Target check box The left-hand column displays a check box that indicates whether the
property is identical for all application targets in the project. If the
check box is checked, the property setting applies to all targets, and
if it is not checked, the property setting applies to this target only. The
target check box column only appears if the current project has more
than one application target defined.

Table 6.9 Edit control properties (Continued)

Property Value

Creating your Application
Using controls

133

Paragraph control
The Paragraph control, as shown in the following figure, is similar to the Edit control
except that it displays information is displayed on multiple lines. If there is more
information than the Paragraph control can display all at one time, a vertical scroll bar
allows users to scroll to see the full contents of the control.

Figure 6.25 Form with Paragraph control

Satellite Forms 8
Development Guide

134

The Propertyspace palette for a Paragraph control is shown in the following figure:

Figure 6.26 Paragraph control Propertyspace palette

The properties available for a Paragraph control are listed in the following table:

Table 6.10 Paragraph control properties

Property Value

(Paragraph) The name of the control. The current project refers to the control by
this name. Type the desired name.

Data Source: Column The name of the column (field) in the form’s linked table to which this
control is linked. This attribute is not available if the form on which it is
placed does not have a linked table. Select the desired column from
the drop list.

Attributes: Font Sets the font for the control. Select the desired font from the drop list.

Creating your Application
Using controls

135

Attributes: AutoKeyboard Sets the auto keyboard option for the control. Select the desired
option from the drop list. This attribute has five possible values:

• Off: When the user taps the edit control, no special handheld
keyboard appears.

• Auto: When the user taps the edit control, the appropriate
handheld keyboard for the control’s data source appears.

• Character: When the user taps the edit control, the character
handheld keyboard appears.

• Numeric: When the user taps the edit control, the numeric
handheld keyboard appears.

• Time: When the user taps the edit control, the time entry
handheld keyboard appears.

Attributes: Underlined • True: Text typed into control is underlined.

• False: Text typed into control is not underlined.

Attributes: Visible • True: The control is visible on the form.

• False: The control is not visible on the form.

Attributes: Read-Only • True: The user cannot modify the text in the control.

• False: The user can modify the text in the control.

Attributes: Don’t Modify
Table

• True: The user cannot modify the data in the linked column using
this control.

• False: The user can modify the data in the linked column using
this control.

Attributes: Auto Shift • True: The first character the user enters into the control is
automatically capitalized.

• False: The shift status of the first character the user enters into
the control is not altered.

Attributes: Input Required • True: The user cannot move to the next record or to another form
before entering data into the control.

• False: The user is not required to enter data into the control.

Dimensions: Left The left origin (in pixels) of the control. Type the desired value.

Dimensions: Top The top origin (in pixels) of the control. Type the desired value.

Dimensions: Width The width (in pixels) of the control. Type the desired value.

Dimensions: Height The height (in pixels) of the control. Type the desired value.

Target check box The left-hand column displays a check box that indicates whether the
property is identical for all application targets in the project. If the
check box is checked, the property setting applies to all targets, and
if it is not checked, the property setting applies to this target only. The
target check box column only appears if the current project has more
than one application target defined.

Table 6.10 Paragraph control properties (Continued)

Property Value

Satellite Forms 8
Development Guide

136

Check Box control
The Check Box control, as shown in the following figure, displays and optionally
edits a True/False field from the current record of the form’s linked table: checked
equals a field value of True, cleared equals a field value of False.

Figure 6.27 Form with Check Box control

Creating your Application
Using controls

137

The Propertyspace palette for a Check Box control is shown in the following figure:

Figure 6.28 Check Box control Propertyspace palette

The properties available for a Check Box control are listed in the following table:

Table 6.11 Check Box control properties

Property Value

(Checkbox) The name of the control. The current project refers to the control by
this name. Type the desired name.

Text The text that the control displays on the form or page. Type the
desired text.

Satellite Forms 8
Development Guide

138

Find Char Click this button to display a table of the characters in the selected
font. Click the character you want to insert at the carrot position in the
Text property. Use this button to insert symbol characters into the
Text property.

Data Source: Column The name of the column (field) in the form’s linked table to which this
control is linked. This attribute is not available if the form on which it is
placed does not have a linked table or if the linked table does not
contain at least one True/False field. Select the desired column from
the drop list.

Action Displays the action or filter for the control. See Setting up actions
on page 177 for more information.

Edit Action Click this button to set the desired action or filter for the control. See
Setting up actions on page 177 for more information.

Attributes: Font Sets the font for the control. Select the desired font from the drop list.

Attributes: Visible • True: The control is visible on the form.

• False: The control is not visible on the form.

Attributes: Read-Only • True: The user cannot modify the setting of the control.

• False: The user can modify the setting of the control.

Attributes: Don’t Modify
Table

• True: The user cannot modify the data in the linked column using
this control.

• False: The user can modify the data in the linked column using
this control.

Attributes: Alternate
Shape

• True: Displays the alternate Check Box style, which resembles a
button that sticks when tapped on the handheld.

• False: Displays the standard Check Box style.

Attributes: Right Anchor • True: The upper-right corner of the control is the anchor point for
the control.

• False: The upper-left corner of the control is the anchor point for
the control.

Dimensions: Left The left origin (in pixels) of the control. Type the desired value.

Dimensions: Top The top origin (in pixels) of the control. Type the desired value.

Dimensions: Width The width (in pixels) of the control. Type the desired value.

Dimensions: Height The height (in pixels) of the control. Type the desired value.

• This property is only available if Alternate Shape is True.

Target check box The left-hand column displays a check box that indicates whether the
property is identical for all application targets in the project. If the
check box is checked, the property setting applies to all targets, and
if it is not checked, the property setting applies to this target only. The
target check box column only appears if the current project has more
than one application target defined.

Table 6.11 Check Box control properties (Continued)

Property Value

Creating your Application
Using controls

139

Radio Button control
The Radio Button control, as shown in the following figure, works like a Check Box
control except that the selection in a group of controls linked to the same field in the
form’s table is mutually exclusive. Radio Button controls can only be linked to
Numeric fields.

Figure 6.29 Form with Radio Button control

When more than one Radio Button control on a form uses the same column as its data
source, these controls form a group. Only one of the controls in a group can be
selected at a time. The value of the Button Index property is the integer placed in the
linked Numeric field when the user selects the corresponding Radio Button. When the
user navigates to a record with a field linked to one or more Radio Buttons, the Radio
Button with the Button Index property corresponding to the value in the linked field
becomes the selected button.

Note MobileApp Designer checks for previously used indices in the range of 0–31. If
you use an index greater than 31, MobileApp Designer does not check to see if there
are conflicts.

Satellite Forms 8
Development Guide

140

The Propertyspace palette for a Radio Button control is shown in the following figure:

Figure 6.30 Radio Button control Propertyspace palette

The properties available for a Radio Button control are listed in the following table:

Table 6.12 Radio Button control properties

Property Value

(Radio) The name of the control. The current project refers to the control by
this name. Type the desired name.

Creating your Application
Using controls

141

Text The text that the control displays on the form or page. Type the
desired text.

Find Char Click this button to display a table of the characters in the selected
font. Click the character you want to insert at the carrot position in the
Text property. Use this button to insert symbol characters into the
Text property.

Button Index The integer placed in the linked Numeric field when the user selects
this Radio Button. When the user navigates to a record, the Radio
Button with the Button Index property corresponding to the value in
the linked field becomes the selected button. Select or type the
desired index.

Data Source: Column The name of the column (field) in the form’s linked table to which this
control is linked. This attribute is not available if the form on which it is
placed does not have a linked table or if the linked table does not
contain at least one Numeric field. Select the desired column from
the drop list.

Action Displays the action or filter for the control. See Setting up actions
on page 177 for more information.

Edit Action Click this button to set the desired action or filter for the control. See
Setting up actions on page 177 for more information.

Attributes: Font Sets the font for the control. Select the desired font from the drop list.

Attributes: Visible • True: The control is visible on the form.

• False: The control is not visible on the form.

Attributes: Read-Only • True: The user cannot modify the setting of the control.

• False: The user can modify the setting of the control.

Attributes: Don’t Modify
Table

• True: The user cannot modify the data in the linked column using
this control.

• False: The user can modify the data in the linked column using
this control.

Attributes: Alternate
Shape

• True: Displays the alternate Radio Button style, which resembles
a button that sticks when tapped on the handheld.

• False: Displays the standard Radio Button style.

Attributes: Input Required • True: The user cannot move to the next record or to another form
before entering data into the control.

• False: The user is not required to enter data into the control.

Dimensions: Left The left origin (in pixels) of the control. Type the desired value.

Dimensions: Top The top origin (in pixels) of the control. Type the desired value.

Dimensions: Width The width (in pixels) of the control. Type the desired value.

Target check box The left-hand column displays a check box that indicates whether the
property is identical for all application targets in the project. If the
check box is checked, the property setting applies to all targets, and
if it is not checked, the property setting applies to this target only. The
target check box column only appears if the current project has more
than one application target defined.

Table 6.12 Radio Button control properties (Continued)

Property Value

Satellite Forms 8
Development Guide

142

Button control
The Button control, as shown in the following figure, performs an action, such as
jumping to another form, returning to the previous form, or creating a new record.

Figure 6.31 Form with Button control

Creating your Application
Using controls

143

The Propertyspace palette for a Button control is shown in the following figure:

Figure 6.32 Button control Propertyspace palette

The properties available for a Button control are listed in the following table:

Table 6.13 Button control properties

Property Value

(Button) The name of the control. The current project refers to the control by
this name. Type the desired name.

Text The text that the control displays on the form or page. Type the
desired text.

Find Char Click this button to display a table of the characters in the selected
font. Click the character you want to insert at the carrot position in the
Text property. Use this button to insert symbol characters into the
Text property.

Action Displays the action or filter for the control. See Setting up actions
on page 177 for more information.

Satellite Forms 8
Development Guide

144

Edit Action Click this button to set the desired action or filter for the control. See
Setting up actions on page 177 for more information.

Attributes: Font Sets the font for the control. Select the desired font from the drop list.

Attributes: Visible • True: The control is visible on the form.

• False: The control is not visible on the form.

Attributes: Border • True: Draws a border around the Button control, giving it the
standard appearance on the handheld device screen.

• False: Removes the border from the Button control, displaying
only the Text on the handheld device screen.

Attributes: Auto Repeat • True: When the user taps the Button control, the Button fires its
action immediately and continues to fire it at specified intervals if
the user keeps the Button pressed.

• False: When the user lifts the stylus from the Button, the Button
fires its action.

Attributes: Alternate
Shape

• True: Displays the alternate Button style, which is a square-edged
rectangle.

• False: Displays the standard Button style, which is a round-edged
rectangle.

Dimensions: Left The left origin (in pixels) of the control. Type the desired value.

Dimensions: Top The top origin (in pixels) of the control. Type the desired value.

Dimensions: Width The width (in pixels) of the control. Type the desired value.

Dimensions: Height The height (in pixels) of the control. Type the desired value.

Target check box The left-hand column displays a check box that indicates whether the
property is identical for all application targets in the project. If the
check box is checked, the property setting applies to all targets, and
if it is not checked, the property setting applies to this target only. The
target check box column only appears if the current project has more
than one application target defined.

Table 6.13 Button control properties (Continued)

Property Value

Creating your Application
Using controls

145

List Box control
The List Box control, as shown in the following figure, displays multiple records from
one or more columns of data from the form’s linked table. If there are more fields than
the List Box can display at one time, a vertical scroll bar allows the user to scroll to
see all of the records.

Figure 6.33 Form with List Box control

Satellite Forms 8
Development Guide

146

The Propertyspace palette for a List Box control is shown in the following figure:

Figure 6.34 List Box control Propertyspace palette

The properties available for a List Box control are listed in the following table:

Table 6.14 List Box control properties

Property Value

(ListBox) The name of the control. The current project refers to the control by
this name. Type the desired name.

Edit Displayed Columns Click this button to set up the columns (fields) the List Box control
displays. See Setting up a List Box control on page 147 for more
information.

Action Displays the action or filter for the control. See Setting up actions
on page 177 for more information.

Edit Action Click this button to set the desired action or filter for the control. See
Setting up actions on page 177 for more information.

Attributes: Visible • True: The control is visible on the form.

• False: The control is not visible on the form.

Attributes: Draw
Separator

• True: Draws a line between records displayed in the List Box
control.

• False: Displays records without separator lines.

Creating your Application
Using controls

147

Setting up a List Box
control

Click the Edit Displayed Columns button in the Propertyspace palette to set up a List
Box control. The Displayed Columns of List Control dialog box shows the current
column layout for the List Box control, as shown in the following figure:

Figure 6.35 Displayed Columns of List Control dialog box

To use this dialog box, follow these instructions:

• Add...: Click this button to display the Add Column dialog box, as shown in the
following figure:

Dimensions: Left The left origin (in pixels) of the control. Type the desired value.

Dimensions: Top The top origin (in pixels) of the control. Type the desired value.

Dimensions: Width The width (in pixels) of the control. Type the desired value.

Dimensions: Height The height (in pixels) of the control. Type the desired value.

Target check box The left-hand column displays a check box that indicates whether the
property is identical for all application targets in the project. If the
check box is checked, the property setting applies to all targets, and
if it is not checked, the property setting applies to this target only. The
target check box column only appears if the current project has more
than one application target defined.

Table 6.14 List Box control properties (Continued)

Property Value

Satellite Forms 8
Development Guide

148

Figure 6.36 Add Column dialog box

• Column: Select the column to add using this combo box.

• Alignment: Select Left or Right from this combo box to set the justification of
the data in the column.

• Max Width: Set the maximum width of the column in characters.

• Perform Lookup with column contents: Check this box to display the table
lookup settings for the column, as shown in the following figure:

Figure 6.37 Add Column Dialog Box with Perform Lookup box checked

The List Box control allows lookups to be performed on each column. A
lookup matches a value in one table with the same value in another table
thereby displaying more useful information in the List Box. For example, if
the customers in a table are listed according to their ID numbers rather than
their names, a lookup table contains the account numbers and the
corresponding customer names can provide a useful lookup. If you specify a
lookup on the ID column of the original table, the List Box control looks up
the ID numbers listed in that column, matches them against the ID column in
the lookup table, retrieves the appropriate customer name from the NAME
column of the lookup table, and displays it on the List Box control.

To set up a lookup on the selected column, use these controls:

Creating your Application
Using controls

149

• Table Name: Select the table containing the desired lookup data using
this combo box.

• Key Column: Select the key column using this combo box. This is the
column in the lookup table that is matched with the column from the
form’s linked table.

• Retrieved Column: Select the column in the lookup table that is
displayed on the form using this combo box.

• Edit...: To edit an existing column in the Displayed Columns of List Control
dialog box, select the desired column and click the Edit... button. The Edit
Column dialog box works exactly like the Add Column dialog box described
above.

• Delete: To delete a column from the List Box control, select the column and then
click the Delete button.

• Up/Dn: To change the order in which columns are displayed on the List Box
control, use these two buttons to arrange the selected columns as desired. Select
the column you want to move and then click the Up or Dn button until it is in the
desired position.

Drop List control
The Drop List control, as shown in the following figure, displays a list of items from
which a user can choose. A Drop List control is the space-saving equivalent of a
Lookup control.

Figure 6.38 Form with Drop List control

Satellite Forms 8
Development Guide

150

The Drop List control’s major advantage include space-saving and flexibility. When a
Drop List is not expanded, it occupies only the space needed to display the current
line. When a user taps the Drop List control, it expands to display a list from its linked
table and column.

The items the Drop List control displays are derived from a column in a lookup table.
The items displayed can be accessed indirectly through a link to a key column in the
lookup table. For example, to display customer names in a Drop List control when the
lookup table sorts names by customer ID number, set the Drop List’s Key Column
property to the ID number column and the Displayed Column property to the
customer name column.

If you do not need the Drop List control to perform a lookup, set both the Key
Column and the Displayed Column properties to the same column. Then, the Drop
List control displays and stores the same values.

Tip Using filters, you can link two drop lists so that one shows a category and the
other shows only items in the selected category. For details, see Linking Drop List
controls on page 557.

Creating your Application
Using controls

151

The Propertyspace palette for a Drop List control is shown in the following figure:

Figure 6.39 Drop List control Propertyspace palette

Satellite Forms 8
Development Guide

152

The properties available for a Drop List control are listed in the following table:

Table 6.15 Drop List control properties

Property Value

(DropList) The name of the control. The current project refers to the control by
this name. Type the desired name.

Data Source: Column The name of the column (field) in the form’s linked table to which this
control is linked. This attribute is not available if the form on which it is
placed does not have a linked table. Select the desired column from
the list. This column is looked up in the Key Column of the lookup
table.

List Contents: Table
Name

The table containing the lookup information. The lookup table must
be a part of the current project. Select the desired table from the list.

List Contents: Key
Column

The column in both the form’s linked table and the lookup table. This
column must be of the same type and have the same name as the
Data Source: Column property. Select the desired column from the
list.

List Contents: Displayed
Column

The column in the lookup table that the control displays. Select the
desired column from the list.

Action Displays the action or filter for the control. See Setting up actions
on page 177 for more information.

Edit Action Click this button to set the desired action or filter for the control. See
Setting up actions on page 177 for more information.

Attributes: Font Sets the font for the control. Select the desired font from the drop list.

Attributes: Visible • True: The control is visible on the form.

• False: The control is not visible on the form.

Attributes: Don’t Modify
Table

• True: The user cannot modify the data in the linked column using
this control.

• False: The user can modify the data in the linked column using
this control.

Attributes: Input Required • True: The user cannot move to the next record or to another form
before selecting data using the control.

• False: The user is not required to enter data into the control.

Attributes: Right Anchor • True: The upper-right corner of the control is the anchor point for
the control.

• False: The upper-left corner of the control is the anchor point for
the control.

Control Dimensions: Left The left origin (in pixels) of the control. Type the desired value.

Control Dimensions: Top The top origin (in pixels) of the control. Type the desired value.

Control Dimensions:
Width

The width (in pixels) of the control. Type the desired value

Drop List Dimensions:
Left

The left origin (in pixels) of the drop list part of the control. Type the
desired value.

Drop List Dimensions:
Top

The top origin (in pixels) of the drop list part of the control. Type the
desired value.

Creating your Application
Using controls

153

Lookup control
The lookup control, as shown in the following figure, displays a list of items from
which a user can choose. Use Lookup Controls to display information in a user-
friendly format by using a linked lookup table to retrieve information from another
table that contains the data.

Figure 6.40 Form with Lookup control

The items the Lookup control displays are derived from a column in a lookup table.
The items displayed can be accessed indirectly through a link to a key column in the
lookup table. For example, to display customer names in a Lookup control when the
lookup table sorts names by customer ID number, set the Lookup’s Key Column

Drop List Dimensions:
Width

The width (in pixels) of the drop list part of the control. Type the
desired value.

Drop List Dimensions:
Height

The height (in pixels) of the drop list part of the control. Type the
desired value.

Target check box The left-hand column displays a check box that indicates whether the
property is identical for all application targets in the project. If the
check box is checked, the property setting applies to all targets, and
if it is not checked, the property setting applies to this target only. The
target check box column only appears if the current project has more
than one application target defined.

Table 6.15 Drop List control properties (Continued)

Property Value

Satellite Forms 8
Development Guide

154

property to the ID number column and the Displayed Column property to the
customer name column.

The Propertyspace palette for a Lookup control is shown in the following figure:

Figure 6.41 Lookup control Propertyspace palette

The properties available for a Lookup control are listed in the following table:

Table 6.16 Lookup control properties

Property Value

(Lookup) The name of the control. The current project refers to the control by
this name. Type the desired name.

Data Source: Column The name of the column (field) in the form’s linked table to which this
control is linked. This attribute is not available if the form on which it is
placed does not have a linked table. Select the desired column from
the list. This column is looked up in the Key Column of the lookup
table.

Lookup Table: Table
Name

The table containing the lookup information. The lookup table must
be a part of the current project. Select the desired table from the list.

Creating your Application
Using controls

155

Ink control
The ink control, as shown in the following figure, allows you to collect signatures or
sketches from the handheld device. The drawing or signature created in the Ink control
is compressed and saved in a Binary field designated as the control’s data source.

Lookup Table: Key
Column

The column in both the form’s linked table and the lookup table. This
column must be of the same type and have the same name as the
Data Source: Column property. Select the desired column from the
list.

Lookup Table: Displayed
Column

The column in the lookup table that the control displays. Select the
desired column from the list.

Attributes: Font Sets the font for the control. Select the desired font from the drop list.

Attributes: Visible • True: The control is visible on the form.

• False: The control is not visible on the form.

Dimensions: Left The left origin (in pixels) of the control. Type the desired value.

Dimensions: Top The top origin (in pixels) of the control. Type the desired value.

Dimensions: Width The width (in pixels) of the control. Type the desired value.

Dimensions: Height The height (in pixels) of the control. Type the desired value.

Target check box The left-hand column displays a check box that indicates whether the
property is identical for all application targets in the project. If the
check box is checked, the property setting applies to all targets, and
if it is not checked, the property setting applies to this target only. The
target check box column only appears if the current project has more
than one application target defined.

Table 6.16 Lookup control properties (Continued)

Property Value

Satellite Forms 8
Development Guide

156

Figure 6.42 Form with Ink control

Note The contents of the Ink control’s data source can only be transferred from the
handheld device to MobileApp Designer or the application’s associated DBMS, but
not back to the handheld device.

The Propertyspace palette for an Ink control is shown in the following figure:

Creating your Application
Using controls

157

Figure 6.43 Ink control Propertyspace palette

The properties available for an Ink control are listed in the following table:

Table 6.17 Ink control properties

Property Value

(Ink) The name of the control. The current project refers to the control by
this name. Type the desired name.

Data Source: Column The name of the column (field) in the form’s linked table to which this
control is linked. This attribute is not available if the form on which it is
placed does not have a linked table or if the linked table does not
have at least one Binary field. Select the desired column from the list.

Attributes: Visible • True: The control is visible on the form.

• False: The control is not visible on the form.

Attributes: Discard Near
Points

• True: The Ink control smooths the drawing by discarding points
that are within a preset distance of each other. Best for capturing
sketches.

• False: The Ink control saves all points in the drawing. Best for
capturing signatures.

Dimensions: Left The left origin (in pixels) of the control. Type the desired value.

Dimensions: Top The top origin (in pixels) of the control. Type the desired value.

Dimensions: Width The width (in pixels) of the control. Type the desired value.

Dimensions: Height The height (in pixels) of the control. Type the desired value.

Satellite Forms 8
Development Guide

158

Procedure Inserting an Ink control

1 Make sure the form you want to add the Ink control to is the active form in the form
design window.

2 Click the Ink Control button in the Control Palette.

3 The Ink View Control appears in the active form as a box with the words Ink.

4 If needed, reposition the ink control by clicking inside the control and dragging it
into position.

5 If needed, resize the ink control to the desired width and height.

6 The ink control has been added to your form.

Tip Display the ink image captured on the handheld in your desktop database
appllication using the SatForms Ink View OCX control. See the Deliveries sample
application and KnowledgeBase for complete details.

Tip The InkHelper extension provides options to convert the binary ink data into
other formats on the handheld, including a standard Windows BMP file. See the
InkHelper article in the KnowledgeBase for more information.

Bitmap control
The bitmap control, as shown in the following figure, places a bitmap image on a
form. Use this control to add pictures, logos, and other interesting visual touches to
your forms.

Both color and black & white bitmaps are supported. Satellite Forms supports 5 bit
depths: 1-bit, 2-bit, 4-bit, 8-bit and 16-bit. However, you must always supply a 1-bit
(black and white) version of the image. This will ensure that your application will
always look right on black and white devices.

Once you have associated a black and white image with a bitmap control, MobileApp
Designer will use a predefined file naming convention to locate the other versions of
the image file. MobileApp Designer will use the suffix "-2", "-4", "-8" and "-16" to
locate the color versions of the black and white image. The number corresponds to the
bit-depth of the file.

For example: if the bitmap control is associated with "Photo.bmp", MobileApp
Designer will look for "Photo-2.bmp", "Photo-4.bmp", etc.

You don't have to specify images for all bit-depths. Often, supplying a black & white
image plus an 8-bit (256 color) image is all you need to have your image look good on
both monochrome and color devices. Higher bit images occupy a larger memory
footprint. When building the project files, MobileApp Designer will use a dithering

Target check box The left-hand column displays a check box that indicates whether the
property is identical for all application targets in the project. If the
check box is checked, the property setting applies to all targets, and
if it is not checked, the property setting applies to this target only. The
target check box column only appears if the current project has more
than one application target defined.

Table 6.17 Ink control properties (Continued)

Property Value

Creating your Application
Using controls

159

algorithm to transform 2, 4, 8 and 16-bit images so that they will use the correct
Palm's color palettes, so your images may look different on the device. To avoid this
transformation effect, you may want to use a graphic editing tool to make sure that the
images are already using the correct Palm color palettes. For your reference, Satellite
Forms installs "PalmPalettes.bmp" in the Templates directory.

You can use Microsoft Paint to create your images, if you do not have a more
advanced image editor that you prefer to use. You can usually find this program in the
Accessories submenu in the Windows Start menu.

Note: using Microsoft Paint, 1-bit BMP file must be saved as Monochrome Bitmap
and other BMP files must be saved as 24-bit Bitmap. See the about box in any of
Satellite Forms sample projects for examples.

Starting with Satellite Forms 7.0, high density (HD) bitmaps can be used in your
PalmOS applications. High density bitmaps occupy the same amount of space on the
form, but display 4 times as much detail as standard density bitmaps, on PalmOS
deveices that support high density displays. High density bitmaps are supported at the
8 and 16 bit color depths. To add an 8 bit high density image to your application, save
the high density version of your bitmap with the -8-HD.bmp file suffix. To add a 16
bit high density image to your application, save the high density version of your
bitmap with the -16-HD.bmp file suffix.

The HD versions of your bitmaps need to be exactly twice as wide and twice as tall as
the standard density versions. For example, if a standard density bitmap is 44x43
pixels, the high density version of the image must be 88x86 pixels in size. MobileApp
Designer will always display the standard density version of the image in the form
designer view: it will not display the high density version of the image even if it is
available.

Note: There is a PalmOS limit of 64K for each bitmap family (all bit depths
combined).

Satellite Forms 8
Development Guide

160

Figure 6.44 Form with Bitmap control

Tip Make sure the bitmap image you place with a Bitmap control is the desired size.
The Bitmap control does not allow you scale the image, although you can crop an
image by changing the size of the Bitmap control.

The Propertyspace palette for a Bitmap control is shown in the following figure:

Creating your Application
Using controls

161

Figure 6.45 Bitmap control Propertyspace palette

The properties available for a Bitmapcontrol are listed in the following table:

Table 6.18 Bitmap control properties

(Bitmap) The name of the control. The current project refers to the control by
this name. Type the desired name.

Image Source: Source
Type

• File: The bitmap is loaded from a file on the development
computer.

• Table: The bitmap is loaded from a Binary field in the form’s
linked table.

Image Source: Column The name of the column (field) in the form’s linked table from which
the image is loaded. This attribute is not available if the form on
which it is placed does not have a linked table or if the linked table
does not have at least one Binary field. Select the desired column
from the list. Available only if Source Type is Table.

Image Source: Image
File

The path and filename of the bitmap file the control displays.
Available only if Source Type is File. This must be the black & white
version of the bitmap: MobileApp Designer will locate the color
version of the bitmap based on the naming conventions described
above.

Image Source: Find File Click this button to browse the development computer’s hard drive for
the desired bitmap image.

Satellite Forms 8
Development Guide

162

Graffiti Shift Indicator control
The Graffiti Shift Indicator control, as shown in the following figure, places a graphic
on the handheld device’s screen that shows the shift status of the Graffiti handwriting
recognizer. This control displays different symbols for lowercase, shifted, or caps lock
Graffiti mode.

Note The Graffiti shift control is not available for Pocket PC applications.

Figure 6.46 Form with Graffiti Shift Indicator control

Attributes: Visible • True: The control is visible on the form.

• False: The control is not visible on the form.

Dimensions: Left The left origin (in pixels) of the control. Type the desired value.

Dimensions: Top The top origin (in pixels) of the control. Type the desired value.

Dimensions: Width The width (in pixels) of the control. Type the desired value.

Dimensions: Height The height (in pixels) of the control. Type the desired value.

Target check box The left-hand column displays a check box that indicates whether the
property is identical for all application targets in the project. If the
check box is checked, the property setting applies to all targets, and
if it is not checked, the property setting applies to this target only. The
target check box column only appears if the current project has more
than one application target defined.

Table 6.18 Bitmap control properties (Continued)

(Bitmap) The name of the control. The current project refers to the control by
this name. Type the desired name.

Creating your Application
Using controls

163

The Propertyspace palette for a Graffiti Shift Indicator control is shown in the
following figure:

Figure 6.47 Graffiti Shift Indicator control Propertyspace palette

The properties available for a Graffiti Shift Indicator control are listed in the following
table:

Table 6.19 Graffiti Shift Indicator control properties

Property Value

(Graffiti) The name of the control. The current project refers to the control by
this name. Type the desired name.

Attributes: Pilot 1.0 • True: The control displays in Pilot 1.0 style.

• False: The control displays in its standard style.

Dimensions: Left The left origin (in pixels) of the control. Type the desired value.

Dimensions: Top The top origin (in pixels) of the control. Type the desired value.

Target check box The left-hand column displays a check box that indicates whether the
property is identical for all application targets in the project. If the
check box is checked, the property setting applies to all targets, and
if it is not checked, the property setting applies to this target only. The
target check box column only appears if the current project has more
than one application target defined.

Satellite Forms 8
Development Guide

164

Auto Stamp control
The Auto Stamp control, as shown in the following figure, automatically enters a date
or time stamp in a field.

Figure 6.48 Form with Auto Stamp control

Tip The Auto Stamp control is invisible so place it anywhere on the form that is out
of the way.

Tip Display the time/date stamp on the form by adding an Edit control linked to the
same data source as the Auto Stamp control.

Creating your Application
Using controls

165

The Propertyspace palette for an Auto Stamp control is shown in the following figure:

Figure 6.49 Auto Stamp control Propertyspace palette

The properties available for an Auto Stamp control are listed in the following table:

Table 6.20 Auto Stamp control properties

Property Value

(AutoStamp) The name of the control. The current project refers to the control by
this name. Type the desired name.

Stamp Type • Current Date: Places the current date in the Data Source column.
The Data Source column must be a Date type.

• Current Time: Places the current time, without seconds, in the
Data Source column. The Data Source column must be a Time
type.

• Current Time (including seconds): Places the current time, with
seconds, in the Data Source column. The Data Source column
must be a Time type.

Data Source: Column The name of the column (field) in the form’s linked table to which this
control is linked. This attribute is not available if the form on which it is
placed does not have a linked table. Only columns of the type
compatible with the Stamp Type are available. Select the desired
column from the list.

Satellite Forms 8
Development Guide

166

SFX Custom control
An SFX Custom control is a program that adds functionality not provided by the
standard controls to your Satellite Forms applications. You can add SFX Custom
controls to the forms in your applications and use them as you would any of the
standard MobileApp Designer controls.

Note This section uses the Slider control as an example of how to use SFX Custom
controls in general. For information on a specific SFX Custom control, check the box
to the left of the desired control and click the Properties... button in the Available
Extensions dialog box, as shown in Figure 6.50 on page 167.

Satellite Forms installs several SFX Custom controls both for you to use in you
applications and also to serve as examples of how to create your own custom controls.
For more information on creating SFX Custom controls, see Chapter , Satellite Forms
API Reference, on page 467

Note SFX Custom controls, such as the Slider control described in this section, are
user interface objects. SFX plug-ins, as described under Adding extensions to Satellite
Forms on page 188, are non-visual programs that provide added funtionality to scripts,
such as mathematical functions.

Before you can add an SFX Custom control to a form, you must add the desired
control to the project. To add an SFX Custom control to the current project, select
View > Extensions... from the MobileApp Designer menu or click the Manage
Extensions button on the Misc toolbar.

Use the Available Extensions dialog box, shown in the following figure, to select the
Extension(s) to add to or remove from the current project by checking or clearing the
check box to the left of each Extension name.

Attributes: Stamp If
Empty

• True: The control stamps the date or time only if the linked field in
the current record is empty. The control does not overwrite
existing data.

• False: The control stamps the date or time whether the linked
field in the current record is empty or not. The control does
overwrite existing data if present.

Dimensions: Left The left origin (in pixels) of the control. Type the desired value.

Dimensions: Top The top origin (in pixels) of the control. Type the desired value.

Target check box The left-hand column displays a check box that indicates whether the
property is identical for all application targets in the project. If the
check box is checked, the property setting applies to all targets, and
if it is not checked, the property setting applies to this target only. The
target check box column only appears if the current project has more
than one application target defined.

Table 6.20 Auto Stamp control properties (Continued)

Property Value

Creating your Application
Using controls

167

Figure 6.50 Available Extensions dialog box

To add an SFX Custom control to a form, click the Custom Control button on
the Control Palette toolbar, select the desired control from the Insert SFX Control
into Form dialog box, shown in the following figure, and click the OK button.

Figure 6.51 Insert SFX Control into Form dialog box

Note The Insert SFX Control into Form dialog box lists only the SFX Custom
controls you have added to the current project.

Satellite Forms 8
Development Guide

168

The following figure shows a form with a Slider control:

Figure 6.52 Form with Slider control

Creating your Application
Using controls

169

The Propertyspace palette for a Slider control is shown in the following figure:

Figure 6.53 Slider SFX Custom control Propertyspace palette

The properties available for an Slider SFX Custom control are listed in the following
table:

Table 6.21 Slider SFX Custom control properties

Property Value

(Extension) The name of the control. The current project refers to the control by
this name. Type the desired name.

Edit Configuration The configuration specific to this control. Type the properties for this
control Keyword = Value format, for example, MAX=10. The
available keywords and valid values are described by information
associated with the extension. Click the Extensions tab in the
Workspace palette and then double-click the Slider Control
extension to view the available keywords and valid values.

Action Displays the action or filter for the control. See Setting up actions
on page 177 for more information.

Edit Action Click this button to set the desired action or filter for the control. See
Setting up actions on page 177 for more information.

Dimensions: Left The left origin (in pixels) of the control. Type the desired value.

Dimensions: Top The top origin (in pixels) of the control. Type the desired value.

Dimensions: Width The width (in pixels) of the control. Type the desired value.

Dimensions: Height The height (in pixels) of the control. Type the desired value.

Satellite Forms 8
Development Guide

170

Configuring application properties
In this step, you set the project properties for your application. Application properties
include the name of the application, which form appears when the application is
opened, and which database formats to use.

1 Select Edit > Properties from the menu.

• The Project Properties dialog box appears, as shown in Figure 4.21 on page 61.

2 Edit the following project properties:

• Name of Application: type the name of your application.

This is the name of the handheld application as it will appear to your end users.

• Initial Form: select the form you want to appear first in your application.

The Initial Form setting determines which form appears first when the
application runs on the handheld.

• Creator ID: choose a pre-registered SMSn ID, or specify your own unique
four-character ID. You must register your unique Creator ID on the ACCESS
Americas (formerly PalmSource, Inc.) website. This applies to PalmOS targets
and Pocket PC targets that use the PalmDB (PDB) device database format (for
complete device database portability between platforms). It is not used for
Pocket PC targets that use the PocketPC DB (CDB) device database format.

Use one of the ten Creator IDs that Satellite Forms has reserved ("SMS0" to
"SMS9"), or enter your own unique Creator ID.

Caution Deployments to third parties should always have a unique ID to avoid
potential conflicts with other existing applications. Deployments internal to an
organization can take advantage of the reserved IDs, provided other applications
within the organization are not already using them.

• Version: sets the version number of the application.

Enter the major version of your application, and the minor version if necessary,
for example 1 and 0.

• Desktop DB Format: specify the desktop database format your application
will use.

• Device DB Format: specify the device database format your application will
use.

Target check box The left-hand column displays a check box that indicates whether the
property is identical for all application targets in the project. If the
check box is checked, the property setting applies to all targets, and
if it is not checked, the property setting applies to this target only. The
target check box column only appears if the current project has more
than one application target defined.

Table 6.21 Slider SFX Custom control properties (Continued)

Property Value

Creating your Application
Creating and Assigning a launcher icon image for your application

171

Note Satellite Forms version 8 supports the Palm DB (PDB) database format only,
and no longer supports the obsolete Pocket PC DB (CDB) format. The Palm DB
format is used for both the Palm OS and Pocket PC platforms.

• Down Key at Table End Creates Record: determines behavior of the
application when a user scrolls to the bottom of a table.

Checked (default): a new record will be created at the end of the table when a
user scrolls past the last record in the table.

Unchecked: the handheld device will beep when a user reaches the end of the
table, and no new record will be created.

• Oracle Lite compatible tables: formats tables for integration with Oracle Lite
from Oracle Corporation.

Checked: tables will be formatted for integration with Oracle Lite.

Unchecked (default): tables are not formatted for integration with Oracle Lite.

• Enable filter wildcard value: determines if wild card values will be allowed
for a filter and defines wild card values.

Checked (default): wildcard value filter is enabled with the value entered.

Unchecked: wildcard filter value is not enabled.

• Create Launcher Application: Check this box and select the desired icon file
by clicking the button to generate a launcher application with the selected
icon. The user can then simply tap the icon to launch the application.

Note This option to create the launcher application now applies to both the PalmOS
and Pocket PC platforms (older versions of Satellite Forms handled Palm OS targets
only using this method).

• B&W File: Type the name of the black-and-white icon file for the launcher
application in this box or click the button to browse for the desired icon
file. All icon files must be Windows.BMP format graphics files. For Palm
OS targets, the large icon size is 31x21pixels and the small icon size is 15x9
pixels. For Pocket PC targets, the large icon size is 32x32 pixels and the
small icon size is 16x16 pixels.

• Backup: Check this box to set the file properties so that Palm Hotsync
makes a backup of the launcher application.

• Invisible: Check this box to make the launcher application icon invisible on
the handheld device.

The Project Properties dialog box should now contain the complete properties of your
application, as shown in Figure 4.22 on page 62

3 Click OK to close the dialog box.

Creating and Assigning a launcher icon image for your application

Integrated Runtime Starting with Satellite Forms Version 8, a new integrated runtime engine feature has
been added to improve application deployment. This feature works by combining your
application launcher icon with the Satellite Forms runtime engine executable, to create

Satellite Forms 8
Development Guide

172

a customized runtime branded specifically for your application. Previously, the
launcher icon app was a small “loader” customized with your icon that would load the
standard RDK runtime engine to run your application. Now the launcher icon and
runtime engine are integrated together into one.

The integrated runtime improves app deployment by having one less file to install as a
part of your package. More importantly, it makes your deployed app more robust by
reducing the chance that installing another Satellite Forms application might affect
your installed application by overwriting the runtime engine with a different version.
For the Palm OS platform, the RDK runtime engine and you icon are combined into
your application PRC file. For the Windows Mobile/Pocket PC platform, the EXE
runtime engine and your icon are combined into your application EXE file. The
runtime engine DLL file is still required however, and is not integrated with the icon
file.

In order to have MobileApp Designer generate an integrated runtime engine for your
application, you must specify a proper launcher icon in the Project Properties.

Palm OS Satellite Forms allows you to specify color and small icons for your application icons.
In the project's property dialog box, specify a black and white 31x21 pixel icon. It is
not necessary to specify the color and small icons in order to compile and distribute
your application, but missing icons will appear as "hearts" on the device. MobileApp
Designer will use the suffix "-Small", "-Color", and "-Small-Color" to locate the other
icon files. The suffix corresponds to the size and bit-depth of the icon file.

Starting with Satellite Forms 7, you can add high density icons for both the standard
and small (list view) sizes of your application icon. High density icons look much
sharper on the Palm application launcher screen, because they use four times as many
pixels as the standard density icons. To add high density icons for your application,
simply name your large color icon with the -Color-HD.bmp file suffix, and place it in
the same folder as your -Color.bmp standard density icon bitmap file. To add an HD
version of your small (list view) icon, simply name your icon bitmap with the -Small-
Color-HD.bmp file suffix.

The HD versions of your icon bitmaps need to be exactly twice as wide and twice as
tall as the standard density versions. Therefore, the high density version of your large
size icon needs to be 62x42 pixels, compared to the standard density color icon bitmap
size of 31x21 pixels. The high density small color icon needs to be 30x18 pixels,
compared to the 15x9 size of the standard density version.

For example, if the project is associated with "MyIcon.bmp", MobileApp Designer
will look for "MyIcon-Small.bmp", "MyIcon-Color.bmp", "MyIcon-Color-HD.bmp",
“MyIcon-Small-Color.bmp”, and “MyIcon-Small-Color-HD.bmp” in the same
directory as the black and white icon file.

Large icon files must be 31x21 pixels in size. Small icon files must be 15x9 pixels in
size. Large high density icons must be 62x42 pixels, and small high density icons
must be 30x18 pixels.

MobileApp Designer uses a simple color-matching algorithm to convert color BMP
files into Palm icons, so your icon may look different on Palm devices. To eliminate
this effect, create icons using Palm's color palettes only. To make this process easier,
Satellite Forms provides you with template files that you can use when creating icons.
You can find the files "Template-Small-Color.bmp", "Template-Small-Color-

Creating your Application
Creating and Assigning a launcher icon image for your application

173

HD.bmp", "Template-Color.bmp" and "Template-Color-HD.bmp" in the Templates
directory within the Satellite Forms installation directory. Satellite Forms
recommends using these template icon files as starter color icon files for your projects.
Copy these files into your project directory, renaming them according the the file
naming convention mentioned earlier, and edit them using Microsoft Paint. You can
also use Microsoft Paint to create your icons. You can usually find this program in
\Program Files\Accessories\

Note If you use Microsoft Paint, black and white icon files must be saved as
Monochrome Bitmap; color icon files must be saved as 24-bit Bitmap.

Procedure Creating a color icon

1 Open one of the template files using MS Paint: Start > Programs > Satellite Forms
8.0 > Template.

2 Draw the icon within the box (any image within that boundary will be converted to
the icon).

3 Transparency color determines the color that will be "invisible" on Palm. The
default transparency color is bright green, so any pixels with this color would be
transparent.

4 Use the "Pencil" tool to draw the icon.

5 To choose a different color, use the "Pick Color" tool and click to select the desired
color from the palette.

6 When finished with the color icon, save it using the proper naming convention, e.g.,
"MyIcon-color.bmp".

7 Do not resize the template file.

Note You can copy and paste your black and white icon into the designated box.

Pocket PC To have MobileApp Designer generate a custom launcher for your application using
your own icon, there are two options. You can use a set of small and large color
bitmap files, or you can use a multi-image Winodws ICO icon file. The option to use
bitmap files instead of an ICO file is new with Satellite Forms 8.

To use multiple bitmap files, the large icon bitmap must be 32x32 pixels in size, and
16 or 256 colors. The small bitmap should be 16x16 pixels, 16 or 256 colors. The
small icon needs to be named the same as the large icon, with a -Small filename
suffix. When you specify the large icon filename, MobileApp Designer will look for
the -Small file automatically in the same folder.

To use a multi-image Windows ICO icon file instead of bitmaps, follow the steps
below:

Procedure Generating a custom launcher for Pocket PC application icons

1 Create a multi-image Windows Icon file (*.ICO) that contains one 16x16 and one
32x32 image. The 16x16 icon will be used when directory is viewed as listing. The
32x32 icon will be used for large icon view. [Note that Satellite Forms does not

Satellite Forms 8
Development Guide

174

include a tool to create Windows ICO files; you must use another tool to create the
ICO files, or use a converter to convert BMP files into ICO files.]

2 Name the icon file Your ApplicationName.ico where Your ApplicationName is the
name of your application project (*.sfa) file. Note that this may be different than the
Name of Application in the project properties.

3 Create an Images folder at the same directory level as your application source file
(.SFA) and place the icon file into that folder. It is recommended that you place all
your bitmap files and the icon files to the Images folder. Save the image in bitmap
format to an Icon file in the Images directory.

Note See the sample in the Samples\Projects\Work Order in your Satellite Forms
installed directory.

Creating a splash screen
Starting with Satellite Forms Version 8, a new feature has been added to display a
splash screen when your application starts. This feature is optional, and if you do not
use a splash screen the standard launch progress text from previous versions will be
shown instead.

This feature was a late addition to Satellite Forms 8 and is not yet integrated into the
Project Properties settings. In a future release the splash screen option will be
enabled from the Project Properties.

To add a splash screen to your application, you need to place a properly named and
formatted bitmap file into your {Project}\Images folder.

Palm OS The splash screen bitmap must meet these specifications:

• The image dimensions should not exceed 160x160 pixels. An image size of
160x160 pixels is recommended.

• The image should be saved as a 24bpp color BMP file. It will be converted by
MobileApp Designer into the proper color format for the Palm OS platform.

• An icon bitmap file for the application must be specified in the Project Properties.

• The splash screen bitmap file must be named the same as the icon bitmap file, with
a “-splash.bmp” filename suffix.

• The splash screen bitmap file must be placed into your {Project}\Images folder.

If you follow those specifications, the splash screen image will be included in your
application and will be displayed when the app launches.

Pocket PC The splash screen bitmap must meet these specifications:

• The image dimensions should not exceed 240x320 pixels. An image size of
240x320 pixels is recommended.

• The image should be saved as a 8bpp color BMP file.

• An icon bitmap file for the application must be specified in the Project Properties.

• The splash screen bitmap file must be named the same as the icon bitmap file, with
a “-splash.bmp” filename suffix.

Creating your Application
Installing the engine and downloading the application

175

• The splash screen bitmap file must be placed into your {Project}\Images folder.

If you follow those specifications, the splash screen image will be included in your
application and will be displayed when the app launches.

The Colorizer sample project demonstrates the use of a splash screen bitmap, as well
as the integrated runtime engine and color forms & controls. If you installed Satellite
Forms in the default location, this sample is located at C:\Satellite Forms
8\Samples\Projects\Colorizer\Colorizer.sfa and can also be reached from the
Windows Start menu > Programs > Satellite Forms 8 > Samples > Projects >
Colorizer. The Colorizer sample project has also been precompiled into a
Redistribution sample that is ready to install onto a Palm OS or Windows Mobile
handheld, via the Windows Start menu > Programs > Satellite Forms 8 > Samples >
Redist > Colorizer.

Installing the engine and downloading the application

Complete the following steps to install your Satellite Forms Palm and Pocket PC
applications to your handheld device for testing.

Install the engine on
Palm device

Procedure Install the Satellite Forms runtime engine/Palm SDK engine

1 Click Start and point to Programs > Satellite Forms 8.0 > Palm > Runtime and click
Install SDK Engine.

2 After the installation begins, select the username of the device on which you want
to install the SDK engine and click Install. Follow the prompt to perform a
Hotsync that installs the runtime engine.

Install the engine on
Pocket PC device

Procedure Install the Satellite Forms runtime engine/Pocket PC SDK engine

Note If you use the new Satellite Forms 8 feature to generate an integrated runtime
engine for your Pocket PC application (described in the previous section), the engine
install step can be omitted. You can skip ahead to the Download step below. The
integrated runtime engine will be installed with your application.

• Click Start and point to Programs > Satellite Forms 8.0 > Pocket PC and click
SDK Runtime Installer. Follow the prompts to complete the installation.

Download the
application

Procedure Download the application onto the device

1 Place the handheld device into its cradle.

2 Select Download App & Tables from MobileApp Designer Handheld menu or click
the Download App & Tables shortcut icon.

3 Make sure ActiveSync or Hotsync Manager is running, then initiate a
synchronization from the button on the cradle to transfer the application to the
device.

Testing the application
After you have downloaded your application to the handheld device, you should
perform complete testing of the application to make sure it performs as designed.
Testing procedures will vary based on the type of application you have created. You
can get started with testing using the steps below:

Satellite Forms 8
Development Guide

176

Procedure Test the sample application

1 For Palm applications, tap the Applications button on the handheld’s screen with
your stylus. For Pocket PC platforms, selet Start > Programs. Then tap the Sat
Forms icon to start Satellite Forms MobileApp Designer.

2 From the Select Application to Run list, tap on the name of your application.The
form you set as the Main form should appear. Verify that the appropriate records or
information is displayed.

3 Test each piece of your application, opening each form, and verifying that the
complete application works as designed.

4 When you are finished, from the Options menu select Exit to close the application.

The final step of testing the application should include uploading the application to
MobileApp Designer to make sure new updates and data entries are being handled
correctly. For instructions on uploading application tables from the handheld device to
MobileApp Designer, see Installing the engine and downloading the application on
page 175.

The next step Phase 1 of creating your Satellite Forms application is now complete. The next phase
is covered inChapter 8.

Using Actions, Filters, Extensions, and Color
Setting up actions

177

Chapter 7
Using Actions, Filters, Extensions,
and Color

This chapter explains how to use control actions and filters to enhance the
functionality of your Satellite Forms applications. It covers setting control actions and
filters in detail and introduces SFX plug-ins, which are covered in detail in Satellite
Forms API Reference, on page 467. The capabilities (new in Satellite Forms version
8) for using color forms and controls to enhance the appearance of your application
are also explored.

Setting up actions
Where appropriate, MobileApp Designer controls and all Menu Items support a
property called Action that occurs when a user taps the control or selects the Menu
Item. The Action property allows you to specify how the control affects the
application, for example, jumping to a different form or setting a table filter.

Note A control always carries out its primary function before the operation specified
in the Action property occurs. For example, if you set up a Check Box control to jump
to another form when it is checked or unchecked, the control performs its primary
function, placing a T or F in its data source column, before jumping to the other form.

The controls that include the Action property are:

• Button control

• Check Box control

• Drop List control

• List Box control

• Radio Button control

• Many SFX Custom controls

• Menu Items other than Separators or Edit menus

Satellite Forms 8
Development Guide

178

Control actions
The Propertyspace palette for each item listed above includes the Action property.
Double-click the Action value or click the Edit Action button to open the Control
Action and Filters dialog box, as shown in the following figure:

Figure 7.1 Control Action and Filters dialog box

Display the actions available for a specific control by clicking the arrow on the Action
Type combo box, as shown above.

The following table lists all control actions. Not all actions are available for every
control.

Table 7.1 Control actions

Action Name Description

No Action No action is defined.

Jump to Form The application displays the specified form. If the target form is linked
to the same table as the current form, the target form display the same
record as the current form. If the target form is linked to a different
table, the target form displays the first record of the new table.
See Jump to Form options on page 179 for detailed information on the
available options for this action.

Jump to Multiple Forms The application displays a target form based on the contents or state of
a specified control. Allows users to navigate automatically to different
forms based on the data they enter in the source form.
See Jump to Multiple Forms options on page 180 for detailed
information on the available options for this action.

Using Actions, Filters, Extensions, and Color
Setting up actions

179

Jump to Form options
When you select the Jump to Form action type, the Control Actions and Filters
dialog box appears as show in the following figure:

Return to Prev. Form The application returns to the previously displayed form.

• Delete current record before jump: Deletes the current record on
the current form before the jump occurs. Typically used to cancel
the addition of a new record to a table linked to a secondary form.

Back to Previous The application accesses 5.2.2 forms stored in a list.

Create Record Creates a new record in the current form’s linked table.

Delete Record Deletes the current record from the form’s linked table.

Goto First Record Displays the first record in the form’s linked table.

Goto Last Record Displays the last record in the form’s linked table.

Goto Prev. Record Displays the previous record in the form’s linked table.

Goto Next Record Displays the next record in the form’s linked table.

Goto Prev. Page Displays the previous page on a multiple-page form. If the current page
is the first page, this action displays the last page on the form.

Goto Next Page Displays the next page on a multiple-page form. If the current page is
the last page, this action displays the first page on the form.

Launch App Closes the current application and runs the specified application.
See Launch App options on page 183 for detailed information on the
available options for this action.

Run Script Executes the selected script.
See Using the Run Script action on page 184 for detailed information
on the available options for this action.

Table 7.1 Control actions (Continued)

Action Name Description

Satellite Forms 8
Development Guide

180

Figure 7.2 Control Actions and Filters dialog box, Jump to Form action

The available options are:

• Target Form: Select the form that is the target of the jump.

• Create if no records: If the target form’s linked table is empty, creates a new
record when the jump occurs.

• Allow if no records: If the target form’s linked table is empty, no new record is
created when the jump occurs.

• Fail if no records: If the target form’s linked table is empty, the jump fails. The
handheld device displays a dialog box with the message No records exist.

• Always create record: Creates a new record in the target form’s linked table
when the jump occurs.

• Delete current record before jump: Deletes the current record on the current
form before the jump occurs. Typically used to cancel the addition of a new record
to a table linked to a secondary form.

Jump to Multiple Forms options
The Jump to Multiple Forms action makes it possible to jump to different forms
based on the value in a specified control. In an application, you can build different
forms for different purposes and then jump to the correct form based on the setting, for
example, of a Check Box control or a group of Radio Button controls.

When you select the Jump to Multiple Forms action type, the Control Actions and
Filters dialog box appears as show in the following figure:

Using Actions, Filters, Extensions, and Color
Setting up actions

181

Figure 7.3 Control Actions and Filters dialog box, Jump to Multiple Forms action

The available options are:

• Index Control: The control on the current form whose setting determines which
form the jump accesses. Select the desired control from the combo box.

• Target Forms: Lists the target forms defined for the multiple jump, including the
control index value, target form, and jump options for each defined jump.

• Add... Button: Click this button to add a new jump to the Target Forms list. The
Create New Jump Target dialog box appears as shown in the following figure:

Figure 7.4 Create New Jump Target dialog box

The options on the Create New Jump Target dialog box are:

• Index: Select the desired index for this jump from the combo box.

Satellite Forms 8
Development Guide

182

• Target Form: Select the target of the jump from the combo box. When the
control index value is equal to the Index setting, the application jumps to the
selected form.

• Record Creation Options: See Jump to Form options on page 179 for more
information on these options.

• Edit... Button: Click this button to edit the jump selected in the Target Forms list.
The Edit Jump Target dialog box offers exactly the same options as the Create
New Jump Target dialog box, as shown in Figure 7.4.

• Delete: Click this button to delete the jump selected in the Target Forms list.
MobileApp Designer deletes the selected jump immediately, without prompting
you first.

Using Actions, Filters, Extensions, and Color
Setting up actions

183

Launch App options
This action closes the current application and runs the specified application. When
you select the Launch App action type, the Control Actions and Filters dialog box
appears as show in the following figure:

Figure 7.5 Control Action and Filters dialog box, Launch App action

The names of some the built-in handheld applications on Palm OS devices are listed in
the following table. To launch a Palm OS application, type the application file name
without the .PRC extension. To launch a PocketPC application, enter the full path and
filename with the .exe suffix, eg. \Windows\Calc.exe.

Table 7.2 Built-in application names

Application Picker Label File Name to Enter

Address Address Book

Calc Calculator

Date Book Date Book

Expense Expense

HotSync HotSync

Mail Mail

Memo Pad Memo Pad

Prefs Preferences

Security Security

To Do List To Do List

Satellite Forms 8
Development Guide

184

Note that in addition to the Launch App control action type, there is a related function
in the SysUtils extension named SU_LaunchApp that allows you to specify the app
name at runtime. This offers some flexibility over the Launch App control action
which requires that you specify the app name at design time.

Using the Run Script action
This action runs the script associated with the control. Scripts provide access to
calculations, conditional logic, bounds checking, and Satellite Forms extensions, both
SFX plug-ins and controls, written with the Satellite Forms API. For more detailed
information on the scripting language and its syntax, see Satellite Forms Scripting
Language Reference, on page 257.

When you select the Run Script action type, Control Action and Filters dialog box
has just one option: the Edit Script... button. Click this button to open the script
editing window for the current control. Type the desired script code and save and
build the project to test the new script.

Using table filters
All controls and Menu Items that support actions can also apply filters to the tables in
an application. A table filter uses a criterion, which is simply a mathematical operator,
and a value to select a subset of records in a table for use at a given stage in an
application. The value can be fixed, a wildcard, or a snapshot of a specific control at
the time the filter is applied. Records that do not meet the filter criterion are not
available until you remove the filter.

Filters and actions operate independently of each other. A control can implement an
action, a filter, or both. If you apply both an action and a filter to a control, you
generally design them to work together, for example, jumping to a form and
displaying a filtered subset of data.

The Control Action and Filters dialog box, with the Filters tab open and two sample
filters applied, appears as shown in the following figure:

Using Actions, Filters, Extensions, and Color
Using table filters

185

Figure 7.6 Control Action and Filters dialog box, Filters tab

In the example shown above, the first filter displays records from the CtvCustomers
table only if the value of the ACTIVE field is equal to the current value of
CheckBox_Control. If CheckBox_Control is checked, its value is T. Using the
example filter, only records from the CtvCustomers table in which the ACTIVE field
equals T are available.

The second filter compares the value of Edit_Control with the value of the DATE
field. Only records from the CtvCustomers table that pass through the first filter are
subject to the second filter. Within that filtered subset of records, only those in which
the DATE field equals the value entered in Edit_Control are available.

Using multiple filters allows you to define a highly specific set of records for use at a
given point in an application. Filters make your applications more efficient and easier
to use by presenting only the data a user needs to complete a specific task. With proper
filtering, users do not need to browse through dozens of records to find the one they
need.

Note A control always executes its primary function before the applying a filter. For
example, if you set up a Check Box control to apply a filter when it is checked or
unchecked, the control performs its primary function, placing a T or F in its data
source column, before applying the filter.

Adding or editing a filter
To add a new filter, click the Add... button on the Filters tab of the Control Action and
Filters dialog box. To edit an existing filter, click the desired filter in the list on the
Filters tab of the Control Action and Filters dialog box and then click the Edit...
button. Clicking either button opens a dialog box with the options available on the
Create New Filter dialog box, as shown in the following figure:

Satellite Forms 8
Development Guide

186

Figure 7.7 Create New Filter dialog box

The Create New Filter/Edit Filter dialog box contains the following options:

• Table: Select the table from the combo box to which to apply this filter. Only
tables that are in the current project are available.

• Column: Select the column in the selected table on which to filter from the combo
box.

• Criterion: Show record if column contents...: Select the desired mathematical
operator to be used when comparing the value of the selected column to either the
control snapshot or value. See Mathematical operators for filters for more
information.

• Criterion: ...snapshot of control: Click the associated radio button and select the
control whose value at the time the application applies the filter is to be the basis
of the filter from the combo box. Only controls in the current project are available.

• Criterion: ...the value below: Click the associated radio button and type the
actual value or wildcard that is the basis for the filter in the edit box.

The valid wildcard characters are defined in the Project Properties dialog box, as
shown in Figure 5.13 on page 83, using the Enable Filter Wildcard Value check box
and edit box.

Mathematical operators for filters
All filters require a mathematical operator to determine how the filter works,
regardless of the value the filter uses. The available operators are:

Using Actions, Filters, Extensions, and Color
Using table filters

187

• Equal (=): The two operands – the table record and the comparison value – must
be identical.

• Not Equal (< >): The two operands – the table record and the comparison value –
must be different.

• Less Than (<): The first operand – the table record – must be less than the second
operand.

• Less Than or Equal (< =): The first operand – the table record – must be less than
or equal to the second operand.

• Greater Than (>): The first operand – the table record – must be greater than the
second operand.

• Greater Than or Equal (= >): The first operand – the table record – must be
greater than or equal to the second operand.

• Equal Anything (del filter): The table record is not filtered. Applying this
criterion removes filtering from the selected table.

• Contain: The first operand – the table record – must contain the comparison
value, whether at the beginning, middle, or end. The location in which the
comparison value appears in the table record is unspecified.

• Begin With: The first operand – the table record – must begin with the
comparison value.

Satellite Forms 8
Development Guide

188

Note Date, Time, and Numeric fields do not support filtering based on the Contain
and Begins With filter operators.

Filter tips
When you use filters in your Satellite Forms applications, bear in mind the following
conditions:

• Filters apply to the entire application. When you apply one or more filters to a
table, it is the table that is filtered. Therefore, all controls – not just the one that
you used to apply the filter – linked to that table can retrieve only the records that
meet the filter criteria.

• When you apply a filter to a table, the filtered table behaves as if it had been
converted to a new table containing only the records that meet the filter criteria.

• Selecting ...snapshot of control as the filter criterion means the filter uses the
contents of the control at the time the application applies the filter. To apply a
different filter value, you must first remove the current filter.

• If you create a new record in a filtered table, the new record is created with fields
initialized to meet the filter criteria.

• If you apply a filter to a table using criteria based on a field that is the basis the
current filter, the new filter criteria for that one field overwrite the previous filter.
The new filter does not affect filters based on other fields of the same table.

• When you apply a filter to the current form’s linked table, the form fires an
OnValidate event because it needs to reload the table data with the filter applied.
See OnValidate on page 415 for more information.

• Filters may also be managed from scripts, with the AddFilter, RemoveFilter, and
RemoveAllFilters functions.

Adding extensions to Satellite Forms
The Satellite Forms Application Programming Interface (API) lets you extend the
capabilities of Satellite Forms applications with extensions called SFX plug-ins and
SFX controls. You can write your own extensions or use extensions others have
written. Satellite Forms provides several extensions, including an SFX plug-in called
Square Root and an SFX control called Slider.

This section uses the example of the Square Root SFX plug-in to illustrate how to
incorporate an SFX Extension into an application.

To add an SFX Extension to a Satellite Forms application, select View > Extensions
from MobileApp Designer menu or click the Manage Extensions button on the
Misc Toolbar. When the Available Extensions dialog box appears, as shown in the
following figure, scroll to Square Root and check box to the left of the Extension
name.

Using Actions, Filters, Extensions, and Color
Adding extensions to Satellite Forms

189

Figure 7.8 Available Extensions dialog box

All Extensions added to the current project are listed in the Workspace palette. Click
the plus sign next to the Extension name to display its methods. Double-click a
method name to display a dialog box containing information about the method. For
example, the Square Root SFX plug-in has two methods: About and SqrRoot. The
About method displays up the extension’s About dialog box, providing general
information. The SqrRoot method performs the square root calculation.

Note When you add an extension to a project, MobileApp Designer automatically
enables the Handheld > Include Extensions in Download option. The next
synchronization downloads all extensions to the handheld device when this option is
enabled. It is unnecessary to download the extension again unless it has changed. As a
result, MobileApp Designer turns off the option after the application download is
completed. It enables the option again if you add another extension. Every time you
open a project that includes extensions, MobileApp Designer enables this option until
the first download completes.

You can now use the Square Root plug-in in any scripts you write. In the examples
below, an Edit control named OutputA, receives the square root of the value in the
Edit control named InputA. The SqrRoot method of the Square Root extension is a
global method, which allows you to reference it directly by name. For example, the
following script is valid:
'Example of using Square Root plug-in with the scripting language
'Output and InputA are edit controls.
'Perform the Square Root calculation.
OutputA = SqrRoot(InputA)

You can always reference an extension by its full name, for added clarity, in the form:
Extensions().Method(), as shown in the following example:
'Second example of using Square Root plug-in with the scripting language
'Output and InputA are edit controls.
'Display the dialog box.

Satellite Forms 8
Development Guide

190

Extensions("SqrRoot").About
'Perform Square Root calculation.
OutputA = Extensions("SqrRoot").SqrRoot (InputA)

For information on and examples of how to use the API to create your own SFX plug-ins, see
Creating an SFX plug-In, on page 468.

Using color in your application
Satellite Forms version 8 introduces a new capability to enhance your application with
color forms and controls, using the Colorizer extension. Colorizer provides script
functions to change colors of various user interface (UI) elements, enabling you to
enhance the visual appeal of your application, or to convey information with more
impact. You can set a color theme to use throughout your application, modify colors
on a form-by-form basis, or even change colors while a form is displayed. The
Colorizer extension works on both the Windows Mobile and Palm OS platforms.

In a broad sense, the Colorizer extension works by allowing you to set foreground
and/or background colors for object types rather than for individual objects. This
means that when you set a color for an edit control, for example, that color is set for all
edit controls rather than for just a single specific control. This approach is perhaps
more easily understood by thinking of it as color themes for your application, rather
than a way to uniquely colorize individual controls. A benefit of this approach is that
by working on an object type basis rather than per-object basis, a consistent visual
appearance throughout the application is more easily achieved.

In order to use Colorizer in your application, you need to add the Colorizer extension
to your project, via the Manage Extensions toolbar icon. Click on Manage
Extensions, then select Colorizer from the list of available extensions. The Colorizer
script functions are then available to your application. See Adding Extensions to
Satellite Forms for a more detailed description of this step, if needed.

While the Colorizer extension is provided for both handheld platforms, there are some
important differences that relate to how each platform handles color objects. It's
important to be aware of these differences if your application is targeting both
platforms, as you may need to adjust your scripting based on the platform. These
differences will be explained in detail below.

In general, the Windows Mobile platform allows more differentiation between the
types of controls than the Palm OS platform does. So, while you can apply different
colors for buttons, checkboxes, radio buttons, and droplists on Windows Mobile,
those controls are all treated the same on Palm OS. It may sound restrictive at first,
but even given the limitations, you can add significant visual appeal to your Palm OS
applications using Colorizer.

Platform-specific considerations
• Windows Mobile applications can be customized more so than Palm OS, but have

the added requirement that you either need to define colors for all object types, or
none at all.

• For Windows Mobile, you need to specify all of the object type color values, then
enable color support with the Colorize(true) method.

Using Actions, Filters, Extensions, and Color
Using color in your application

191

• For Windows Mobile, you can revert to the system default colors simply by
calling Colorize(false).

• For the Palm OS platform, color changes are effective immediately without
needing to call the Colorize method. The Colorize method is simply ignored
on Palm OS.

• For the Palm OS platform, there is no way to easily revert back to the system
default colors. You would need to know what the default color values were and set
the current object colors back to those values.

• For the Palm OS platform, there are some additional uncommon UI object types
that can be colored using ColorizeExtra, which is ignored on the Windows
Mobile platform.

Color Values
All of the functions in Colorizer accept color values in a specific format, as
hexadecimal RGB values in bbggrr (blue green red) order. The red, green, and blue
values are from a range of 0..255, or 00..FF in hex format. The RGB color value
should be prefaced with the &H operator to denote that it is a hexadecimal value. An
example value for a solid, full intensity blue color would be &HFF0000. The blue
intensity level is 255 (FF), while green and red are both zero. Similarly, solid bright
green would be &H00FF00, and bright red would be &H0000FF. Solid black is
&H000000, while solid white is &HFFFFFF. Bright yellow is a mix of green and red
(&H00FFFF), magenta is blue & red (&HFF00FF), and cyan is blue & green
(&HFFFF00). Medium orange would be something like &H1386FB, and bright pink
might be &H7513FB, and so on. Various shades of grey have the same intensity values
for blue, green, and red, so a medium grey might be &H808080 for example. This RGB
format for specifying colors is probably familiar to web page designers, as a similar
approach is used in the HTML web page markup language.

Tip Many paint programs on PCs have a color selection tool that will help you derive
the hexadecimal RGB values for any color you choose.

Coloring the Form
The form is probably the first place to start when adding color to your application. The
Colorizer function ColorizeForm(backcolor) is used to set the background color
of the form. To set the form background color to bright blue, for example, you would
call ColorizeForm(&HFF0000).

As mentioned above, for the Windows Mobile platform, you need to set all object type
colors, and then enable those colors by calling Colorize(true). On the Palm OS
platform, the form color is automatically used as the background color for many of the
control types, so when you call ColorizeForm, it also affects the background color of
most controls.

Coloring Controls
• Button controls can be colored using the ColorizeButton(forecolor,

backcolor) method.

Satellite Forms 8
Development Guide

192

• Text controls can be colored using the ColorizeText(forecolor,
backcolor) method.

• Checkbox controls can be colored using the ColorizeCheckbox(forecolor,
backcolor) method.

• Radio button controls can be colored using the ColorizeRadio(forecolor,
backcolor) method.

• Edit controls can be colored using the ColorizeEdit(forecolor, backcolor)
method.

• Paragraph controls can be colored using the ColorizeParagraph(forecolor,
backcolor) method.

• Droplist controls can be colored using the ColorizeDroplist(forecolor,
backcolor) method.

• List controls can be colored using the ColorizeListbox(forecolor,
backcolor) method.

• Lookup controls can be colored using the ColorizeLookup(forecolor,
backcolor) method.

• Ink controls can be colored using the ColorizeDroplist(forecolor,
backcolor) method.

Setting Extra Colors
On the Palm OS platform only, there are some additional color settings that can be
accessed using the ColorizeExtra(UIelement, color) script method. In fact, it is
possible to set any of the form, control, and extra object colors using the
ColorizeExtra method. The UI element is specified via an index number. The list of
user interface elements that can be colorized with this function, and their index
numbers, is:

Table 7.3 Palm OS user interface element types

Index Element Name Description

0 UIObjectFrame Color for the border of user interface objects (such
as command buttons, push buttons, selector
triggers, menus, arrows checkboxes, and other
controls).

1 UIObjectFill The background color for a solid or "filled" user
interface object.

2 UIObjectForeground The color for foreground items (such as labels or
graphics) in a user interface object.

3 UIObjectSelectedFill The background color of the currently selected user
interface object, whether that object is solid or not.

4 UIObjectSelectedForeground The color of foreground items in a selected user
interface object.

5 UIMenuFrame The color of the border around the menu.

Using Actions, Filters, Extensions, and Color
Using color in your application

193

6 UIMenuFill The background color of a menu item.

7 UIMenuForeground The color of the menu's text.

8 UIMenuSelectedFill The background color of a selected menu item.

9 UIMenuSelectedForeground The color of the text of a selected menu item.

10 UIFieldBackground The background color of an editable text field.

11 UIFieldText The color of the text in the editable field.

12 UIFieldTextLines The color of underlines in an editable field.

13 UIFieldCaret The color of the cursor in an editable text field.

14 UIFieldTextHighlightBackground The background color for selected text in an
editable text field.

15 UIFieldTextHighlightForeground The color of the selected text in an editable text
field.

16 UIFieldFepRawText Special setting used only on Japanese devices.

17 UIFieldFepRawBackground Special setting used only on Japanese devices.

18 UIFieldFepConvertedText Special setting used only on Japanese devices.

19 UIFieldFepConvertedBackground Special setting used only on Japanese devices.

20 UIFieldFepUnderline The color used for underlines in the inline
conversion area.

21 UIFormFrame The color of the border and titlebar on a form.

22 UIFormFill The background color of a form.

23 UIDialogFrame The color of a border and titlebar on a modal form.

24 UIDialogFill The background color of a modal form.

25 UIAlertFrame The color of the border and titlebar on an alert
panel.

26 UIAlertFill The background color of an alert panel.

Table 7.3 Palm OS user interface element types

Index Element Name Description

Satellite Forms 8
Development Guide

194

Integrating with your Database
Overview

195

Chapter 8
Integrating with your Database

The chapter provides an overview and description of the process of integrating
Satellite Forms applications with your desktop Database Management System
(DBMS). These instructions assume you are familiar with the terms and concepts
relating to DBMSs.

Overview
MobileApp Designer allows you to create applications consisting of forms and data
tables and then download those applications to handheld devices. In some cases, this
is the end of the development process. If you are using the data you collect exclusively
on the handheld device and do not need to copy it to a desktop computer to save it or
merge it with an existing database, you need not do anything further.

In most cases, however, you need to extract the data your Satellite Forms applications
display from a database in a DBMS on a desktop computer or server and merge
information collected or modified using the handheld device back into the same
database. The Satellite Forms HotSync and ActiveSync ActiveX controls make this a
simple process. The Satellite Forms HotSync and ActiveSync controls work with any
DBMS that supports 32-bit ActiveX controls, also called OLE controls or custom
controls.

Most popular DBMS products, including Microsoft Access, Lotus Approach, and so
on, support ActiveX controls. Satellite Forms also supports a DLL-based integration
method for DBMS products that do not support ActiveX controls.

Integrating your application with your database management system is Phase 2 of the
application development process. Phase 1 is covered in Phase 1: Working with
MobileApp Designer, on page 103. To integrate your application, you must complete
the following steps:

1 Link the database tables created by Satellite Forms with the database application.

2 Write code to extract data from the database and copy it into the Satellite Forms
tables. This code prepares a table or tables to be downloaded to the handheld
device.

3 Write code to transfer data from the associated Satellite Forms database tables on
the handheld device back to the database and merge as desired.

Satellite Forms 8
Development Guide

196

4 Write code to handle sync events, that is, to transfer information to and from the
handheld device. This code calls the code in Steps 2 and 3 as required.

Overview of the
integration process

MobileApp Designer saves the data tables Satellite Forms applications use in Access
.MDB or dBase .DBF format. The Access and dBase file formats are widely used as a
universal information interchange medium. A variety of desktop DBMS products,
organizers, spreadsheets, and so on, support these database formats.

The following steps summarize the process of integrating a Satellite Forms
application with a DBMS:

Procedure Integrating a Satellite Forms application with a DBMS

1 Extract the desired information from the database and copy it into the tables
MobileApp Designer creates.

2 Download the tables to the handheld. The user in the field views and edits the
information in these tables.

3 Copy the tables on the handheld into the tables MobileApp Designer created. These
tables now contain the changes made by the user.

4 Inspect and merge, if desired, the data in the tables into your database. The merging
procedure is entirely under the control of your DBMS or custom desktop
application.

The actual details of how to transfer information from the tables in your DBMS to and
from the tables MobileApp Designer created for your Satellite Forms application
depends on your DBMS product and is not covered in detail here. Virtually all DBMS
products can either link to Access or dBase tables using ODBC or import and export
Access or dBase tables.

Integrating a Satellite Forms database with a Corporate database
Satellite Forms applications that interchange data with a Corporate database store data
in three locations:

• the handheld

• the Satellite Forms intermediate databases (either DBF or MDB)

• the Corporate database

The data storage architecture is illustrated below.

Integrating with your Database
Satellite Forms HotSync ActiveX control for Palm OS

197

Figure 8.1 Satellite Forms data storage architecture

As the arrows indicate, data must pass through the intermediate data transfer tables
(B) to be moved between the Handheld and the Corporate Database. Some or all of the
data exchanges indicated by the arrows will occur during each sync (HotSync or
ActiveSync) operation. The developer can control which data exchanges occur and the
order in which they occur. This gives complete flexibility in managing the sync
process. Note that the data transfer tables are used as temporary storage areas to
facilitate the data transfer. Data in these tables are completely overwritten by
successive sync operations.

To successfully integrate Corporate Data with your Satellite Forms application, you
must understand how to accomplish four data transfers (refer to the previous figure)
described as follows:

• A -> B

• B -> C

• C -> B

• B -> A

You must also understand how to manage the sync operation using the methods and
events of the Satellite Forms HotSync and/or ActiveSync ActiveX Control. In the
example below, we describe each of these steps in detail.

Note Direct synchronization of Satellite Forms handheld data with server databases
(A <--> C) is possible with third party server synchronization products. To find out
more about these options, consult the Satellite Forms Solutions Guide in the Satellite
Forms docs folder or online at http://www.satelliteforms.net/solutions.htm.

Satellite Forms HotSync ActiveX control for Palm OS
The Satellite Forms HotSync ActiveX control allows you to interact with the HotSync
process of the Palm OS handheld, making it possible for you to transfer Satellite
Forms tables and applications between desktop computers and handheld devices.

The Satellite Forms HotSync ActiveX control is installed and registered on your PC
automatically during installation. To use the ActiveX control with your DBMS, you
need to place the control on a form in a database application. The following example
uses Access 2000.

To place the Satellite Forms HotSync ActiveX control onto an Access 2000 form,
open the desired database, click the Objects > Forms button on the left side of the
database window, click the desired form in the list, then click the Design button on the

Handheld Intermediate database Corporate database
A B C

http://www.satelliteforms.net/solutions.htm

Satellite Forms 8
Development Guide

198

database window toolbar. Then select Insert > ActiveX Control... from the Access
2000 menu and scroll to and click Satellite Forms 8.0 HotSync Control, as shown in
the following figure:

Figure 8.2 Access 2000 Insert ActiveX Control dialog box

Click the OK button to add the control to the form. The control is visible during
design time, but is invisible when you run your application. Therefore, just place it
somewhere out of the way, as shown in the following figure:

Figure 8.3 Access 2000 form with Satellite Forms ActiveX control

Integrating with your Database
Satellite Forms HotSync ActiveX control for Palm OS

199

Tip By convention, the Satellite Forms ActiveX control in sample code is always
named SatForms.

A form with an enabled Satellite Forms HotSync ActiveX control receives a control
event whenever HotSync is started, when the user presses the HotSync button on the
handheld cradle, or when the user initiates a remote HotSync.

The rest of the HotSync process is the responsibility of the code that you write in your
DBMS. This code extracts, merges, or both, information from the desktop DBMS
tables and the MobileApp Designer tables and interacts with the Satellite Forms
HotSync control to transfer tables and possibly also applications between the desktop
and the handheld device.

Satellite Forms includes an Access add-in file: SatForms.mda. This add-in contains
useful constants and information that you can use when writing your HotSync handler
code. To enable this add-in, open the database you are working with using Access,
select File > Get External Data > Import... from the Access menu, navigate to the
Satellite Forms Include directory, click SatForms.mda, and click the Import button.

If you installed Satellite Forms in the default installation directory, the SatForms.mda
file is located in:
C:\Satellite Forms 8\Include\

Click the Modules button to see the Satellite Forms API listing, as shown in the
following figure:

Figure 8.4 Satellite Forms API for Access

Users of other DBMS products should refer to the ActiveX.txt file located in the
Satellite Forms Doc directory. The information contained in this file is identical to the
information in the SatForms.mda file. Use this file as a starting point when writing the
code for your particular DBMS.

Satellite Forms 8
Development Guide

200

If you installed Satellite Forms in the default installation directory, the ActiveX.txt
file is located in:
C:\Satellite Forms 8\Doc\

Satellite Forms HotSync ActiveX control events
The Satellite Forms HotSync ActiveX control supports a single event,
HotSyncStatus. The control fires this event when the user starts a HotSync
operation. For the event to fire, the control must be enabled. For instructions, see
Satellite Forms HotSync ActiveX control properties on page 207. If the control is not
enabled, it ignores the HotSync operation and does not fire an event.

The HotSyncStatus event contains two integer parameters: StatusCode and Param.
StatusCode specifies the HotSync event that occurred. Param is a generic parameter
whose meaning depends on the value of StatusCode. For more details, see the
description of status codes in Table 8.1.

HotSyncstatus event parameters
The following table lists and describes the HotSync status event parameters.

Satellite Forms HotSync ActiveX control methods
The Satellite Forms HotSync ActiveX control provides methods that allow you to
copy tables and applications – when you want to install an upgrade – to and from the

Table 8.1 HotSync status event parameters

StatusCode Param Comments

Status_HotSyncStart
(value = 1)

Not used Indicates that a HotSync operation has
started and the Satellite Forms conduit is
ready to accept commands. During this
event, determine what needs to be done,
possibly based on the user name or user
ID of the handheld device, and issue any
file transfer commands you require. The
control provides methods to request file
operations. For more information, see the
following section, Satellite Forms HotSync
ActiveX control for Palm OS.

Status_HotSync-CommandComplete
(value = 3)

File
transfer
result
code

Indicates that a file transfer operation has
completed. Each file transfer operation you
request generate this event when it
completes. If the command was
successful, Param is 1. If the command
was unsuccessful, Param is 0.

Status_HotSyncEnd
(value = 2)

HotSync
overall
result
code

This status code indicates that the entire
Satellite Forms HotSync operation
completed. The overall result of the
HotSync operation is passed in Param. If
all operations were successful, Param is
1. If any or all commands failed, Param is
0.

Integrating with your Database
Satellite Forms HotSync ActiveX control for Palm OS

201

handheld device and the desktop computer. In most cases, you only need to use these
methods while executing code in your HotSyncStatus event handler. The methods
for file transfer and user management are described in the following pages.

Note These methods only cause a request for a particular operation to be queued with
the conduit. On completion of any of these methods, the requested operation has not
occurred yet. The operation takes place when the conduit regains control, usually
when your HotSyncStatus event handler is finished. After the transfer operation
occurs, a HotSyncStatus event fires.

The following table provides an overview of the Satellite Forms HotSync ActiveX
control methods:

Table 8.2 Satellite Forms HotSync ActiveX control methods

Method‘ Description

CopyAppToPalmPilot Copies the specified application to the handheld device.

CopyAppToPalmPilotEx Copies the specified application to the handheld device with a
specific Creator ID.

CopyTableToPalmPilot Copies a specified table to the handheld device.

CopyTableToPalmPilotEx Copies a specified table to the handheld device with a specific
Creator ID.

GetTableFromPalmPilot Retrieves the specified table from the handheld device.

HsAbandonChanges Discards all changes made to the HotSync Manager’s user list since
the last call to HsCommitChanges.(Deprecated in Satellite Forms
7.2)

HsAddUser Adds a new user to the HotSync Manager user list.

HsCommitChanges Commits all changes made to the HotSync Manager’s user list up to
this point.(Deprecated in Satellite Forms 7.2)

HsDeleteUser Deletes a user from the HotSync Manager user list.

HsFindUserByID Returns information about the specified user.

HsGetFirstUser Returns information about the first user in the HotSync Manager’s
user list.

HsGetNextUser Returns information about the next user in order in the HotSync
Manager’s user list.

HsRenameUser Changes the user name of a user in the HotSync Manager user list.

InstallPrcFileToPalmPilot Installs the specified handheld device native file on the specified
handheld device.

Satellite Forms 8
Development Guide

202

File Transfer methods

CopyAppToPalmPilot

CopyAppToPalmPilotEx

CopyAppToPalmPilot(Filename As String, CreatorID As String, SDDI_DllName As
String, CreateFlag As Long, VersionMajor As Integer, VersionMinor As Integer)
Copies the application specified by Filename to the handheld device.
Parameters Filename The full path and file name of the application to be copied.

CreatorID The four-character Creator ID string.
SDDI_DllName The full path and file name of the SDDI DLL.
CreateFlag The table attribute flag value (see CreateFlag Parameter

Values below for more information).
VersionMajor Integer specifying the major version of the application.
VersionMinor Integer specifying the minor version of the application.

Return Value None
Comments The Filename parameter must contain the full path and file name of the

application to be copied. This method only copies the application to the
handheld device. Be sure to copy all required tables for a new or upgraded
application as well. The CreateFlag value should be 0 for a standard read/write
table, or 2 for a read only table (see Setting the table name and database
options on page 105 for more information about table attributes).
This function is not commonly used.

See Also CopyAppToPalmPilotEx, CopyTableToPalmPilot, CopyTableToPalmPilotEx

CopyAppToPalmPilotEx(Filename As String, CreatorID As Integer)
Copies the application specified by Filename to the handheld device with the Creator ID
specified by CreatorID.
Parameters Filename

CreatorID
The full path and file name of the application to be copied.
The numeric Creator ID.

Return Value None
Comments The Filename parameter must contain the full path and file name of the

application to be copied. This method only copies the application to the
handheld device. Be sure to copy all required tables for a new or upgraded
application as well. This feature is generally only used with the Satellite Forms
RDK to group files by creator. For details, see the Satellite Forms RDK
Addendum .
This function is not commonly used.

See Also CopyAppToPalmPilot, CopyTableToPalmPilot, CopyTableToPalmPilotEx

Integrating with your Database
Satellite Forms HotSync ActiveX control for Palm OS

203

CopyTableToPalmPilot

CopyTableToPalmPilotEx

GetTableFromPalmPilot

CopyTableToPalmPilot(Filename As String, CreatorID As String, SDDI_DllName As
String, CreateFlag As Long, VersionMajor As Integer, VersionMinor As Integer)
Copies the table specified by Filename to the handheld device.
Parameters Filename The full path and file name of the table to be copied.

CreatorID The four-character Creator ID string.
SDDI_DllName The full path and file name of the SDDI DLL.
CreateFlag The table attribute flag value (see Comments below).
VersionMajor Integer specifying the major version of the application.
VersionMinor Integer specifying the minor version of the application.

Return Value None
Comments The Filename parameter must contain the full path and file name of the

desktop database table to be copied, eg. C:\MyAppData\Customers.DBF. The
CreateFlag value should be 0 for a standard read/write table, or 2 for a read
only table (see Setting the table name and database options on page 105 for
more information about table attributes).
Most desktop sync applications wil use this function.

See Also CopyTableToPalmPilotEx

CopyTableToPalmPilotEx(Filename As String, CreatorID As Integer)
Copies the table specified by Filename to the handheld device with the Creator ID specified by
CreatorID.
Parameters Filename

CreatorID
The full path and file name of the table to be copied.
The numeric Creator ID.

Return Value None
Comments The Filename parameter must contain the full path and file name of the table to

be copied. This feature is generally only used with the Satellite Forms RDK to
group files by creator. For details, see the Satellite Forms RDK Addendum .
This function is not commonly used.

See Also CopyTableToPalmPilot

GetTableFromPalmPilot(Filename As String, CreatorID As String, SDDI_DllName As
String, CreateFlag As Long, VersionMajor As Integer, VersionMinor As Integer)
Retrieves the table specified by Filename from the handheld device.
Parameters Filename The full path and file name of the table to be retrieved.

CreatorID The four-character Creator ID string.
SDDI_DllName The file name of the SDDI DLL, eg. SDDI_PalmDB.DLL.
CreateFlag The table attribute flag value (see Comments below).
VersionMajor Integer specifying the major version of the application.
VersionMinor Integer specifying the minor version of the application.

Return Value None

Satellite Forms 8
Development Guide

204

InstallPrcFileToPalmPilot

Note This method only prepares the file to be installed. The file is actually installed
when a HotSync session for the specified handheld is performed to completion. Note
that if you call this method from within your HotSyncStatus event handler with
HotSyncUserID set to zero, the native file is installed at the end of the current
HotSync session.

User Management methods
These methods allow you to manipulate the user list the handheld HotSync Manager
maintains.

Note Prior to Satellite Forms 7.2, changes were not actually made to the user list until
you called the HsCommitUserChanges method. To discard changes, you would call
the HsAbandonChanges method. Now, starting with Satellite Forms 7.2, all user
changes are carried out immediately, and the HsCommitUserChanges and
HsAbandonChanges methods are simply ignored.

Caution Be very careful when using these methods. If you apply them incorrectly, they
may cause irretrievable loss of handheld data. It is highly recommended that you
synchronize the handheld device and then back up the handheld directory on your
desktop computer while developing applications that use these methods.

HsAbandonChanges

Comments The Filename parameter must contain the full path and file name of the
desktop database table to be retrieved, eg. C:\MyAppData\Customers.DBF.
The CreateFlag value should be 0 for a standard read/write table, or 2 for a
read only table (see Setting the table name and database options on page 105
for more information about table attributes).
Most desktop sync applications wil use this function.

See Also CopyTableToPalmPilot, CopyTableToPalmPilotEx

InstallPrcFileToPalmPilot(Filename As String, HotSyncUserID As Integer) As Long
Installs the handheld device native file specified by Filename on the handheld device specified
by HotSyncUserID.
Parameters Filename

HotSyncUserID
The full path and file name of the native file to be installed.
The numeric HotSync User ID.

Return Value TRUE (non-zero) if the method succeeds. FALSE (zero) if the method fails.
Comments The Filename parameter must contain the full path and file name of the native

file (.PRC or .PDB) to be installed. If a HotSync event is in progress when you
call this method, you can set HotSyncUserID to zero to install the file on the
handheld device currently being synchronized. To install files to a specific
handheld device, use the methods described in the following section: User
Management methods.

See Also CopyAppToPalmPilot, CopyTableToPalmPilot, CopyTableToPalmPilotEx

HsAbandonChanges() As Long
Deprecated. Starting with Satellite Forms 7.2, all user changes are carried out immediately,
and the HsCommitUserChanges and HsAbandonChanges methods are simply ignored.
Parameters None
Return Value Always returns FALSE.

Integrating with your Database
Satellite Forms HotSync ActiveX control for Palm OS

205

HsAddUser

HsCommitChanges

HsDeleteUser

HsFindUserByID

Comments Prior to Satellite Forms 7.2, this method discarded changes made using any
other Hs* methods.

See Also HsCommitChanges

HsAddUser(HotSyncUserName As String, HotSyncUserID As Long, HotSyncSubDir As
String) As Long
Adds a new user to the HotSync Manager user list.
Parameters HotSyncUserID

HotSyncUserName

HotSyncSubDir

The HotSync Manager user ID of the user to be added to
the list.
The HotSync Manager user name of the user to be added
the list.
The HotSync subdirectory associated with the user to be
added to the list.

Return Value TRUE (non-zero) if the method successfully added the new user to the user
list. FALSE (zero) if the method failed to add the new user to the user list.

Comments Call HsCommitChanges to commit the new user’s information to the user list.
See Also HsDeleteUser, HsCommitChanges

HsCommitChanges() As Long
Deprecated. Starting with Satellite Forms 7.2, all user changes are carried out immediately,
and the HsCommitUserChanges and HsAbandonChanges methods are simply ignored.
Parameters None
Return Value Always returns TRUE.
Comments Prior to Satellite Forms 7.2, this method commited changes made using any

other Hs* methods (until you called this method, no changes were made to the
HotSync Manager’s user list).

See Also HsAbandonChanges

HsAddUser(HotSyncUserID As Long) As Long
Deletes a user from the HotSync Manager user list.
Parameter HotSyncUserID The HotSync Manager user ID of the user to be deleted

from the list.
Return Value TRUE (non-zero) if the method successfully deleted the user from the user list.

FALSE (zero) if the method failed to delete the user from the user list.
Comments Call HsCommitChanges to commit the user deletion from the user list.
See Also HsAddUser, HsCommitChanges

HsFindUserByID(HotSyncUserID As Long, HotSyncUserName As String,
HotSyncSubDir As String, fInstalled As Long) As Long
Returns information about the user specified by HotSyncUserID.

Satellite Forms 8
Development Guide

206

HsGetFirstUser

HsGetNextUser

Parameters HotSyncUserID

HotSyncUserName

HotSyncSubDir

fInstalled

In. Contains the HotSync Manager user ID of the user
whose information is to be retrieved.
Out. Contains the HotSync Manager user name of the
specified user in the list when the method returns.
Out. Contains the HotSync subdirectory associated with
the specified user in the list when the method returns.
Out. True (non-zero) is the specified user is installed on a
handheld device. False (zero) if the specified user is not
installed on a handheld device.

Return Value TRUE (non-zero) if there is information about the specified user in the user list.
FALSE (zero) if the specified user is not in the user list.

Comments Pass in empty parameters except for HotSyncUserID. This method fills the
remaining parameters with information on return.

See Also HsGetFirstUser, HsGetNextUser

HsGetFirstUser(HotSyncUserID As Long, HotSyncUserName As String, HotSyncSubDir
As String, fInstalled As Long) As Long
Returns information about the first user in the HotSync Manager’s user list.
Parameters HotSyncUserID

HotSyncUserName

HotSyncSubDir

fInstalled

Out. Contains the HotSync Manager user ID of the first
user in the list when the method returns.
Out. Contains the HotSync Manager user name of the first
user in the list when the method returns.
Out. Contains the HotSync subdirectory associated with
the first user in the list when the method returns.
Out. True (non-zero) is the first user is installed on a
handheld device. False (zero) if the first user is not
installed on a handheld device.

Return Value TRUE (non-zero) if there is information about at least one user in the user list.
FALSE (zero) if there is not at least one user in the user list.

Comments Pass in empty parameters. This method fills the parameters with information on
return.

See Also HsGetNextUser, HsFindUserByID

HsGetNextUser(HotSyncUserID As Long, HotSyncUserName As String, HotSyncSubDir
As String, fInstalled As Long) As Long
Returns information about the next user in order in the HotSync Manager’s user list.
Parameters HotSyncUserID

HotSyncUserName

HotSyncSubDir

fInstalled

Out. Contains the HotSync Manager user ID of the next
user in the list when the method returns.
Out. Contains the HotSync Manager user name of the
next user in the list when the method returns.
Out. Contains the HotSync subdirectory associated with
the next user in the list when the method returns.
Out. True (non-zero) is the next user is installed on a
handheld device. False (zero) if the next user is not
installed on a handheld device.

Return Value TRUE (non-zero) if there is information about another user in the user list.
FALSE (zero) if there is not another user in the user list.

Integrating with your Database
Satellite Forms HotSync ActiveX control for Palm OS

207

HsRenameUser

Satellite Forms HotSync ActiveX control properties
The Satellite Forms HotSync ActiveX control has several properties that allow you to
activate and deactivate the control and to retrieve information about the HotSync
operation in progress.

The following table lists and describes the properties of the Satellite Forms HotSync
ActiveX control.

Comments Call this method after calling HsGetFirstUser. Use this method in a loop to
retrieve information on all subsequent users. Pass in empty parameters. This
method fills the parameters with information on return.

See Also HsGetFirstUser, HsFindUserByID

HsRenameUser(HotSyncUserID As Long, NewUserName As String) As Long
Changes the user name of a user in the HotSync Manager user list.
Parameters HotSyncUserID

NewUserName

The HotSync Manager user ID of the user whose user
name you want to change.
The new user name for the specified user.

Return Value TRUE (non-zero) if the method successfully changed the specified user name.
FALSE (zero) if the method failed to change the user name.

Comments Call HsCommitChanges to commit the user name change to the user list.
See Also HsCommitChanges

Table 8.3 Satellite Forms HotSync ActiveX control properties

Name Type Description

Enabled Boolean The Satellite Forms control always starts up disabled and
does not fire any events during HotSync. To enable the
control, your code must explicitly set this property to True
(1) in the initialization code of the form that contains the
Satellite Forms control.

PilotUserName String The user name of the handheld being synchronized. This
property is read-only and valid only during a
HotSyncStatus event. (The same UserName value is
available in your handheld application using the
GetUserName script method.)

UserID Integer The Satellite Forms-generated unique user ID of the
handheld being synchronized. This property is read-only and
valid only during a HotSyncStatus event. (The same
UserID value is available in your handheld application using
the GetUserID script method.) This is NOT the same as the
HotSyncUserId used by the Hs* methods in the Satellite
Forms HotSync ActiveX control.

Satellite Forms 8
Development Guide

208

The CreatorID and CreatorString properties are different representations of the
same value: the Palm OS Creator ID of the handheld application currently being
synchronized.

As explained in the Deploying your Application chapter, the Satellite Forms SDK
engine generates a single set of HotSyncStatus events no matter how many
applications are actually installed on a handheld device. These notifications are
generated with a Creator ID of SMSF. The CreatorString property contains SMSF
and the CreatorID property contains 1397576518 in decimal. In hexadecimal, this
number is 53 4d 53 46, which converts to the ASCII characters S M S F.

An important difference between Satellite Forms SDK and RDK is that every Satellite
Forms application created with the RDK has its own Creator ID and therefore
generates its own set of HotSyncStatus events. When deploying applications with

CmdType Integer The method that just completed. This property contains one
of the following values:
CmdType_Unknown=0
CmdType_CopyAppToPda=1
CmdType_Reserved0=2
CmdType_CopyTableToPda=3
CmdType_GetTableFromPda=4
CmdType_Reserved1=5
CmdType_ReadPdaInfo=6
CmdType_CopyAppToPdaEx=7
CmdType_CopyTableToPdaEx=8
CmdType_CopyPrcToPda=9

Other values are undefined. This property is read-only and
valid only during a HotSyncStatus event with status
Status_HotSyncCommandComplete.

CmdFilename String The name of the file affected by the method that just
completed. This property is read-only and valid only during a
HotSyncStatus event with a status of
Status_HotSyncCommandComplete.

CreatorID Integer This property contains the handheld Creator ID in integer
format of the Satellite Forms application currently being
synchronized. This integer representation is useful for
passing methods to the ActiveX that require the Creator ID as
a parameter. If you want to compare against a known Creator
ID, use the CreatorString property, which returns the
same value in string format.

CreatorString String This property contains the handheld Creator ID in string
format of the Satellite Forms application currently being
synchronized. The string representation is useful If you want
to compare against a known Creator ID as described in the
Satellite Forms RDK Addendum. If you are using an ActiveX
method that requires the Creator ID as a parameter, use the
CreatorID property, which returns the same value in
integer format. This property is usually only used when
deploying an application with the Satellite Forms RDK.

Table 8.3 Satellite Forms HotSync ActiveX control properties (Continued)

Name Type Description

Integrating with your Database
HotSync and Satellite Forms HotSync ActiveX control

209

the RDK, the CreatorString property becomes important in determining whether an
event is from your application or from another third-party application also installed on
the same handheld.

When using the Satellite Forms SDK, the CreatorString property is usually not
used.

HotSync and Satellite Forms HotSync ActiveX control
When you use the Satellite Forms HotSync ActiveX control, the control center of the
HotSync operation is the code you will write to handle the HotSyncStatus event in
your desktop DBMS application. The HotSyncStatus event handler mediates the
transfer of information between the handheld and your database application.

Although the event handler can vary considerably depending on the details of your
particular application, most HotSyncStatus event handlers operate in the following
general way:

1 Event handler entered with StatusCode = Status_HotSync Start

Determine the specific handheld device that is being synchronized by examining
the PilotUserName or UserID properties in the Satellite Forms control. Call the
GetTableFromPalmPilot method as many times as necessary to retrieve any
tables that contain information the user may have entered on the handheld device.
Then exit the event handler so the conduit can process your requests.

2 Event handler entered with StatusCode = Status_HotSync CommandComplete

The event handler is called one time for each call to GetTableFromPalmPilot in
step 1. Check the Param property each time to make sure that the command
completed successfully, then exit the event handler immediately except when
notified of the last operation requested in step 1. You can determine the last
operation by counting notifications or by checking the filename in the property
CmdFilename.

When you receive notification that the last GetTableFromPalmPilot method you
requested has completed, use commands specific to your particular DBMS to
integrate the data from the newly retrieved tables into the tables of your DBMS.
With Access, you might use an Update Query for this purpose. For more information,
refer to your DBMS documentation.

Next, extract any data you want to download to the handheld from your DBMS
tables and put the data into the dBase tables of your Satellite Forms application.
The commands required to do this will vary considerably depending on your
particular DBMS and application. With MS Access, you might use an Append
Query for this purpose. For more information, refer to the DBMS documentation.

Once the dBase tables you want to copy to the handheld are ready, call the
CopyTableToPalmPilot method for each table you want to copy and exit the event
handler so the conduit can process your requests.

3 Event handler entered with StatusCode = Status_HotSync CommandComplete.

Satellite Forms 8
Development Guide

210

The event handler will be called one time for each time you called
CopyTableToPalmPilot in step 2. Check Param each time to make sure that the
command completed successfully, then exit the event handler immediately.

4 Event handler entered with StatusCode = Status_HotSyncEnd.

This status code tells you all operations are completed and the Satellite Forms
HotSync operation is complete. Check Param to make sure that everything went
okay, then exit the event handler. You will receive no more notifications during this
HotSync.

Sample desktop synchronization applications are provided in the \Satellite Forms
8\Samples folder. A Visual Basic 6 sample application titled SatSync is available in
the \Satellite Forms 8\Samples\SatSync\ folder. Microsoft Access 2000 samples sync
applications are provided in these folders:

\Satellite Forms 8\Samples\Projects\Customers\Access 2000\Access\Customers2000.mdb

\Satellite Forms 8\Samples\Projects\Deliveries\Access 2000\Access\Deliv2000.mdb

HotSync without ActiveX
If your desktop DBMS does not support or you prefer not to use ActiveX controls, it is
still possible to control HotSync by accessing the API of the Satellite Forms DLL.
This method, although functionally equivalent, is considerably more complex and
requires knowledge of Windows programming concepts.

The basic idea is that all the properties, methods, and events of the Satellite Forms
ActiveX control have low-level API equivalents provided by SFrmUt80.dll. The
following table shows the mappings.

The API this DLL exports is declared in SatForms.mda and in the C-language
include file DllApi.h. These files are installed in the Include directory of the Satellite

Table 8.4 Satellite Forms ActiveX control API usage

ActiveX Feature DLL Equivalent Comments

HotSyncStatus event A registered message is broadcast
to all top-level windows.

Use SF_GetRegisteredMsg to get the value of the message
that is broadcast and watch for it in a top-level window of your
application. WPARAM contains StatusCode and LPARAM will
contains Param. Call SF_AddToCommandQueue to make your
file transfer requests. Every time your message procedure returns,
the conduit will check if there are any requests queued. If so, it
executes them. When there are no more requests, HotSync
terminates.

File transfer methods Call SF_AddToCommandQueue
to make your file transfer requests.

Pass in CmdType and CmdFilename as parameters. Usually
called in response to receiving the message above.

Properties:
PilotUserName
UserID
CmdType
CmdFilename
SatFormsDir

Call:
SF_GetUserName,
SF_GetUserID,
SF_GetCmdType,
SF_GetCmdFilename,
SF_GetSatFormsDir

Usually called in response to receiving the message above.

Integrating with your Database
Satellite Forms Synchronization for Pocket PC

211

Forms. The import library for this DLL is named SFrmUt80.lib and is located in the
Lib directory.

Satellite Forms Synchronization for Pocket PC
The Satellite Forms synchronization system for Pocket PC is conceptually similar to
the Palm OS system, with some important differences. An obvious difference is that
the Palm OS system is based on the Palm Hotsync service, while Pocket PC devices
utilize the Microsoft ActiveSync service to manage the connection between the
handheld and the desktop. An additional difference between the two systems that is
not readily apparent is in the way that database tables are converted between desktop
and handheld formats.

With the Palm OS system, the processes of file transfer between desktop PC and
handheld, and database file conversion between desktop format (DBF/MDB) and
handheld format (PDB) are integrated into a single process. With the Pocket PC
system, file transfer and database file conversion are separate steps. Both the file
transfer and database conversions steps must be carried out for the synchronization
system to work, but what takes a single step on the Palm OS system takes two
equivalent steps on the Pocket PC system.

There are two options provided with Satellite Forms to handle the file transfer step for
Pocket PC: the Satellite Forms ActiveSync ActiveX control, or a non-ActiveX
approach that relies on the CeRemote.DLL. Both methods rely on the SFConvertPDB
utility to handle the database file conversion tasks.

SFConvertPDB Utility
SFConvertPDB is a commandline utility included with Satellite Forms that runs on
the desktop computer, not on the handheld. It enables you to convert a desktop DBF or
MDB database to a Satellite Forms Palm DB (PDB) handheld database, as a step in
the overall process of sending data from the desktop to the handheld. It also enables
you to convert a Palm DB (PDB) database into a desktop DBF or MDB database, as a
step in the overall process of retrieving data from the handheld to the desktop.

SFConvertPDB does not require a Palm HotSync or Microsoft ActiveSync session to
be active, as it runs entirely on the PC. This provides a handheld-platform-
independent PC based mechanism to convert data to & from PDB files, for use with
Satellite Forms applications on the Palm OS platform and on the Pocket PC platform
when using PDB database tables.

SFConvertPDB is an EXE executable program, rather than an ActiveX control or
DLL. To integrate SFConvertPDB into your synchronization system, your sync
application must be capable of launching an EXE application. SFConvertPDB.exe is
located in the \Satellite Forms 8\Redist\PocketPC\ folder.

SFConvertPDB Usage SFConvertPDB operates via commandline switches, in which you supply the required
information about which database file to convert, and how to convert it.

Usage: SFConvertPDB [commandline switches]

Satellite Forms 8
Development Guide

212

-[PDBtoPC|PCtoPDB]: Specifies whether you want to convert from a PDB database
to a DBF/MDB database [use -PDBtoPC], or from a PC DBF/MDB database to a PDB
[use -PCtoPDB]. You may specify only one of these conversion options, not both.

-filename \path\to\PC_database_file.[DBF|MDB]: You must supply the path and
filename of the PC DBF or MDB database file which you wish to convert to or from
PDB. You do not specify the PDB file even when converting from PDB to DBF/
MDB: rather, you always supply the PC database filename ending in .DBF or .MDB.
The PDB file must exist in the same folder as the DBF/MDB file as specified by the
path.

-creatorid CRID: Where CRID is the four-character unique Creator ID used by your
application, as defined in the Project Properties settings screen in MobileApp
Designer. You must supply the correct case sensitive characters, which cannot
include spaces. When testing with the SatForms SDK runtime engine used by
MobileApp Designer, the creatorid is SMSF. This parameter is needed in order to
generate the correct PDB table name for conversion, as the creatorid is incorporated
into the PDB table name. The default creatorid if none is supplied is SMSF.

-SDDI_DLL DLLfilename: You must specify the correct SatForms SDDI DLL to
perform the conversion. At the present time, the only conversion supported is for
SatForms Palm DB (PDB) databases, so you should always specify the
SDDI_PalmDB.DLL. This parameter is optional, and if you omit it, the default of
SDDI_PalmDB.DLL will be used.

-VersionMajor VV: Where VV is the major version number of your application, as
defined in the Project Properties settings screen in MobileApp Designer. The
allowable values are from 0 - 99. This parameter is needed in order to generate the
correct PDB table name for conversion, as the major and minor version numbers are
incorporated into the PDB table name. This parameter is optional, and if you omit it,
the default value of 0 will be used.

-VersionMinor vv: Where vv is the minor version number of your application, as
defined in the Project Properties settings screen in MobileApp Designer. The
allowable values are from 0 - 99. This parameter is needed in order to generate the
correct PDB table name for conversion, as the major and minor version numbers are
incorporated into the PDB table name. This parameter is optional, and if you omit it,
the default value of 0 will be used.

-CreateFlag n: Where n specifies the desired table attributes (flags) to set on the PDB
table when it is created by SFConvertPDB. The allowable values are any positive
integer, corresponding to the combination of desired table flags. Certain PDB table
behaviours can be set via this numeric flag value, including Backup, Read-Only, and
NoAutoCommit flags. The table flags cause the SatForms runtime engine to treat the
table differently on the PDA. For a more detailed reference about table flags, see the
explanation below. This parameter is optional, and if you omit it, the default value of 0
will be used.

-quiet: This parameter instructs SFConvertPDB to not display any popup error
messages when performing the conversion. The exit code of SFConvertPDB can be
queried to determine if the conversion was successful or not, making it suitable for
calling from sync applications or batch files. When run interactively, you would not
likely use the -quiet switch so that you could see error messages pop up if there are
conversion problems.

Integrating with your Database
SFConvertPDB Utility

213

Table Flag Values for the
CreateFlag Parameter

The Table Flag is a numeric value that determines special behaviours of that table
when it is in use on the PDA by the Satellite Forms runtime engine. For example, one
of the possible table flag values indicates that the table is Read-Only, and the runtime
engine therefore prevents any modifications/additions/deletions to the data in the
table. For more information about these attributes, see Setting the table name and
database options on page 105 which explains how to set these table options in the
MobileApp Designer Table Editor.

Each table can have different flags as they are assigned on a per-table basis. The
current supported table flags include:

Some table flag values can be combined, while others must be exclusive. For
example, the Backup, Read Only, and Autoname flags can all be present on a given
table, and you would specify all of those flags by adding their flag values together
([Backup] 1 + [Read Only] 2 + [Autoname] 4 = 7). The Read Only and
NoAutoCommit flags must be exclusive to each other: do not combine them together.

SFConvertPDB Sample Usage

Here are some SFConvertPDB usage samples for common conversions scenarios:

• Converting the database file C:\MyApp\Data\EMyAp0102_MYTABLE1.PDB to
C:\MyApp\Data\MyTable.DBF

SFConvertPDB -PDBtoPC -filename C:\MyApp\Data\MyTable.DBF -
creatorID MyAp -VersionMajor 1 -VersionMinor 2

Result: the C:\MyApp\Data\MyTable.DBF is created containing the records
from EMyAp0102_MYTABLE1.PDB.

• Converting the database file D:\Server\Data\tNames.MDB to
D:\Server\Data\EMyAp0200_TNAMES.PDB with a -CreateFlag value of 7 to
indicate Backup + Read-Only + Autoname table flags:

SFConvertPDB -PCtoPDB -filename D:\Server\Data\tNames.MDB -
creatorID MyAp -VersionMajor 2 -VersionMinor 0 -CreateFlag 7

Flag Value Flag Name Flag Description
0 none Regular read/write table, with no special behaviours
1 Backup The table will be backed up at Hotsync (PalmOS only,

ignored on Pocket PC)
2 Read Only The runtime engine will prohibit table modifications/

additions/deletions and will only allow read access to
table data. This option applies to both Palm OS and
Pocket PC. On Pocket PC there is a performance
advantage to using read only tables when possible.

4 autoname The desktop table name will automatically match the
logical table name (Link table name to filename option
in MobileApp Designer table editor). This flag does not
affect behaviour on the handheld at all, it is used by
MobileApp Designer table editor only.

64 noautocommit The NoAutoCommit option means that the table can be
modified like a regular read/write table, but that none of
the changes to the table are saved automatically. In
order to save changes to a NoAutoCommit table, your
application has to save or “commit” those changes in
script by calling the Tables(“tablename”).CommitData
method. (Pocket PC platform only)

Satellite Forms 8
Development Guide

214

Result: the D:\Server\Data\EMyAp0200_TNAMES.PDB is created containing
the records from tNames.MDB and has the Backup + Read-Only + Autoname
table flags set.

Satellite Forms ActiveSync ActiveX control for Pocket PC
The Satellite Forms ActiveSync ActiveX control allows you to interact with the
ActiveSync process of the Pocket PC handheld, making it possible for you to copy
Satellite Forms tables and applications between desktop computers and handheld
devices.

Note The Satellite Forms ActiveSync ActiveX control was originally designed for
Pocket PC applications that use the Pocket PC DB (CDB) device database format, but
can also be used to sync Palm DB (PDB) databases. Starting with Satellite Forms 8,
we support the use of Palm DB (PDB) device database files only for Pocket PC
applications (and PalmOS applications), as CDB databases are now obsolete. In
addition, you may consider using an alternate non-ActiveX method to synchronize the
Pocket PC data with the desktop PC, such as using the SatSyncPPC utility, the
CeRemote.DLL, and the SFConvertPDB utility as documented in the Satellite Forms
KnowledgeBase. These alternate methods could be used if desired, or you can use the
ActiveSync ActiveX control. In both cases (ActiveX or non-ActiveX methods), an
integral part of the sync process is the SFConvertPDB database conversion utility
described above.

This ActiveSync ActiveX synchronization approach is demonstrated in the sample
application SatSyncPPC, located in \Satellite Forms 8\Samples\SatSyncPPC.

A typical data synchronization flow using the SF ActiveSync OCX to retrieve a PDB
database table from the PocketPC, then send an updated PDB table back to the PPC,
would go something like this:

• retrieve the PDB table from the PPC using FileGetFromPPC

• convert the PDB table to MDB/DBF using SFConvertPDB

• manipulate that data in your PC database, creating an updated DBF/MDB

• convert the updated DBF/MDB table to PDB using SFConvertPDB

• download that updated PDB to the PPC using FileSendToPPC

The Satellite Forms ActiveSync ActiveX control is installed and registered on your
PC automatically during installation. To use the ActiveX control with your DBMS,
you need to place the control on a form in a database application. The following
example uses Access 2000.

To place the Satellite Forms ActiveSync ActiveX control onto an Access 2000 form,
open the desired database, click the Objects > Forms button on the left side of the
database window, click the desired form in the list, then click the Design button on the
database window toolbar. Then select Insert > ActiveX Control... from the Access
2000 menu and scroll to and click SatelliteFormsActiveSync.SFAxPPC61. Click the
OK button to add the control to the form. The control is visible during design time, but
is invisible when you run your application. Therefore, just place it somewhere out of
the way.

Integrating with your Database
Satellite Forms ActiveSync ActiveX control for Pocket PC

215

Tip By convention, the Satellite Forms ActiveSync ActiveX control in sample code
is always named SFAxPPC.

A form with an enabled Satellite Forms ActiveSync ActiveX control receives a
control event whenever the Pocket PC device is connected to the PC by placing it in
the cradle.

The rest of the sync process is the responsibility of the code that you write in your
DBMS. This code extracts, merges, or both, information from the desktop DBMS
tables and the MobileApp Designer tables and interacts with the Satellite Forms
ActiveSync control to transfer tables and possibly also applications between the
desktop and the handheld device.

Satellite Forms ActiveSync ActiveX control events
The Satellite Forms ActiveSync ActiveX control supports two events, Connected
and Disconnected. The control fires the Connected event when the Pocket PC
device is connected to the PC. Use this event to start the sync process in your sync
application. The control fires the Disconnected event when the Pocket PC device is
disconnected from the PC.

All the functions are active after this event.

Satellite Forms ActiveSync ActiveX control methods
The Satellite Forms ActiveSync ActiveX control provides methods that allow you to
copy files to and from the handheld device and the desktop computer. In most cases,
you will use these methods while executing code in your Connected event handler.
The methods for file transfer and other functions are described in the following pages.

The following table provides an overview of the Satellite Forms ActiveSync ActiveX
control methods:

Table 8.5 Satellite Forms ActiveSync ActiveX control methods

Method Description

DatabaseToPPC Sends a desktop database (MDB|DBF) to the Pocket PC and
converts it to Microsoft Pocket PC DB handheld database (CDB)
format. Obsolete: CDB databases are no longer supported, use
PDB databases and FileSendToPPC function instead.

DatabaseFromPPC Retrieves a Microsoft Pocket PC DB device database (CDB) from
the Pocket PC and converts it to desktop database (MDB|DBF)
format on the PC. Obsolete: CDB databases are no longer
supported, use PDB databases and FileSendToPPC function
instead.

FileSendToPPC Sends a file from the PC to the Pocket PC without conversion. Use
this function to transfer PDB databases and other files to the
Pocket PC.

FileGetFromPPC Copies a file from the Pocket PC to the desktop PC without
conversion. Use this function to retrieve PDB databases and
other files from the Pocket PC.

FileExists Tests whether a file exists on the Pocket PC.

Satellite Forms 8
Development Guide

216

File Transfer methods

DatabaseToPPC

DatabaseFromPPC

FileSendToPPC

FileDelete Deletes a file from the Pocket PC device.

CreateFolder Creates a folder on the Pocket PC device.

RemoveFolder Removes (deletes) a folder from the Pocket PC device.

StartApp Starts an application on the Pocket PC remotely from the desktop
PC.

CheckPassword Checks the user password on the Pocket PC device to test if it
matches the passed string.

ActiveSync_GetActiveSyncFolder Returns the path where Microsoft ActiveSync is installed to on the
desktop PC.

Table 8.5 Satellite Forms ActiveSync ActiveX control methods

Method Description

Comments Obsolete: CDB databases are no longer supported; use PDB
databases and FileSendToPPC function instead.

See Also DatabaseFromPPC, FileSendToPPC

Comments Obsolete: CDB databases are no longer supported; use PDB
databases and FileGetFromPPC function instead.

See Also DatabaseToPPC, FileGetFromPPC

Function FileSendToPPC(PCFile As String, PDAFile As String) As Long
Sends a file from the PC to the Pocket PC without conversion.
Parameters PCFile The full path and file name of the file on the desktop PC

to be sent to the Pocket PC handheld.
PDAFile The full path and name of the file as it will be created on

the Pocket PC.
Return Value Error code as a Long Integer. An error code of 0 indicates the command

completed successfully.
Comments Use this function to send PDB databases from the desktop PC to the

Pocket PC handheld. This function sends files of any type from the PC to the
Pocket PC without performing any conversion.
On Pocket PC 2003 and later versions, a bug in the PocketPC operating
system prevents you from overwriting an existing file on the PDA, even if that
file is closed and not in use. Therefore, you must delete the file from the PDA
first before sending the new file. For example:
If SFAxPPC.FileExists(PDAfile) = 0 Then SFAxPPC.FileDelete
(PDAfile)

See Also FileGetFromPPC, FileExists, FileDelete

Integrating with your Database
Satellite Forms ActiveSync ActiveX control for Pocket PC

217

FileGetFromPPC

FileExists

FileDelete

CreateFolder

Function FileGetFromPPC(PCFile As String, PDAFile As String) As Long
Copies a file from the Pocket PC to the desktop PC without conversion.
Parameters PCFile The full path and file name of the file on the desktop PC

which will be copied from the Pocket PC handheld.
PDAFile The full path and name of the file on the Pocket PC that

will be copied to the desktop PC.
Return Value Error code as a Long Integer. An error code of 0 indicates the command

completed successfully.
Comments Use this function to retrieve PDB databases from the Pocket PC

handheld to the desktop PC. This function gets files of any type from the
Pocket PC to the desktop PC without performing any conversion.

See Also FileSendToPPC

Function FileExists(PDAFile As String) As Long
Tests whether a file exists on the Pocket PC.
Parameters PDAFile The full path and name of the file on the Pocket PC to

be tested for existence.
Return Value Error code as a Long Integer. An error code of 0 indicates the file exists,

otherwise the file does not exist or there was an error.
Comments Note that this function returns a 0 if the file exists, which may be opposite to

what you consider the logical result.
See Also FileDelete

Function FileDelete(PDAFile As String) As Long
Deletes a file from the Pocket PC device.
Parameters PDAFile The full path and name of the file on the Pocket PC to

be deleted.
Return Value Error code as a Long Integer. An error code of 0 indicates the file was

successfully deleted.
Comments A file that is currently open (in use) on the Pocket PC device will not be deleted
See Also FileExists, DatabaseToPPC, FileSendToPPC

Function CreateFolder(Foldername As String) As Long
Creates a folder on the Pocket PC device.
Parameters Foldername The full path of the new folder to be created on the

Pocket PC device.
Return Value Error code as a Long Integer. An error code of 0 indicates the folder was

successfully created.
Comments User folders are often created as subfolders of \My Documents\ on the Pocket

PC device. The \Program Files\ folder is a good location to create your
application folder in, for example \Program Files\My App.

See Also RemoveFolder

Satellite Forms 8
Development Guide

218

RemoveFolder

Other ActiveSync Control methods

StartApp

CheckPassword

ActiveSync_GetActiveSyncFolder

Function RemoveFolder(Foldername As String) As Long
Removes (deletes) a folder from the Pocket PC device.
Parameters Foldername The full path of the folder to be removed on the Pocket

PC device.
Return Value Error code as a Long Integer. An error code of 0 indicates the folder was

successfully created.
Comments User folders are often created as subfolders of \My Documents\ on the Pocket

PC device. The \Program Files\ folder is a good location to create your
application folder in, for example \Program Files\My App.

See Also CreateFolder, FileDelete

Function StartApp(PDAAppName As String, [Commandline As String]) As Long
Starts an application on the Pocket PC remotely from the desktop PC.
Parameters PDAAppName The full path and file name of the Pocket PC device

application to be launched.
Commandline The optional commandline to pass to the device

application as it is launched.
Return Value Error code as a Long Integer. An error code of 0 indicates the command

completed successfully.
Comments The application will be launched as the foreground application on the device,

just as if it had been launched manually by the user.
Tip: This function can be used to remotely install a CAB file on the device, by
launching the wceload.exe utility and passing the pathname of the CAB file on
the device, as illustrated in this example from the KnowledgeBase article 10015:
SyncAx1.StartApp("wceload.exe", "\MyAppInstall\SFRPPC61.cab")

See Also FileSendToPPC

Function CheckPassword(Password As String) as Long
Checks the user password on the Pocket PC device to test if it matches the passed string.
Parameters Password The password string to test.
Return Value Error code as a Long Integer. An error code of 0 indicates the password

matched.
Comments Note that this function returns a 0 if the password matches, which may be

opposite to what you consider the logical result.

Function ActiveSync_GetActiveSyncFolder() As String
Returns the path where Microsoft ActiveSync is installed to on the desktop PC.
Parameters None
Return Value A string containing the path where Microsoft ActiveSync is installed to on the

desktop PC.
Comments Note that this returns the path on the desktop PC, not the handheld.

Integrating with your Database
ActiveSync without ActiveX

219

Satellite Forms ActiveSync ActiveX control properties
The Satellite Forms ActiveSync ActiveX control has several properties that allow you
to get and in some cases set information relating to the current connected Pocket PC
device. In most cases, you will use these methods while executing code in your
Connected event handler. The following table lists and describes the properties of the
Satellite Forms ActiveSync ActiveX control.

ActiveSync without ActiveX
If your desktop DBMS does not support or you prefer not to use ActiveX controls, it is
possible to control ActiveSync to send and retrieve databases between the desktop and
the Pocket PC handheld by accessing the API of the Satellite Forms CeRemote.dll.

Table 8.6 Satellite Forms ActiveSync ActiveX control properties

Name Type Description

State Boolean The State property is read-only and returns 0 (false) if
the Pocket PC is disconnected, or 1 (true) if the device is
currently connected to the desktop PC.

DeviceName String The device name of the handheld currently connected.
This property is read-only and valid only while the device
is connected (State property = 1).

LastError Long
Integer

Returns a SatForms ActiveSync ActiveX error number if
a function is not executed successfully.

LastErrorText String Returns a SatForms ActiveSync ActiveX error message
string if a function is not executed successfully.

LastAPIError Long
Integer

Returns an Microsoft ActiveSync API error number if a
function is not executed successfully.

ActiveSync_Present Boolean This read-only property returns True if ActiveSync is
installed on the desktop PC, False if not installed.

ActiveSync_Path String Normally must not be changed, however if the
ADOFILTR.DLL is not in the folder of ActiveSync then
you must set this value to the folder where
ADOFILTR.DLL is located on the desktop PC.

ActiveSync_GuestOnly Boolean Returns or sets if Microsoft ActiveSync will accept the
connected devices as Guests. When working as a
guest, you can browse the files on your mobile device
and copy or move information, but you cannot
synchronize information. Once you disconnect your
device from the desktop computer, settings selected in
ActiveSync for the guest device are deleted.

ActiveSync_StartOnConnect String Returns or sets the pathname of a desktop PC program
that ActiveSync starts after a connection is established.

ActiveSync_StartOnDisConnect String Returns or sets the pathname of a desktop PC program
that ActiveSync starts after a connection is finished.

Satellite Forms 8
Development Guide

220

This method, although functionally equivalent, does not support all of the features of
the ActiveSync ActiveX control.

The basic idea is that all the methods of the Satellite Forms ActiveX control have API
equivalents provided by CeRemote.dll, while the properties and events of the ActiveX
control are not duplicated in the DLL.

The API this CeRemote.dll exports is declared in the C-language include file
CeRemoteApi.h, installed in the Include directory of Satellite Forms. The import
library for this DLL is named CeRemote.lib and is located in the Lib directory.

This synchronization approach is demonstrated in the sample application
SatSyncPPC, located in \Satellite Forms 8\Samples\SatSyncPPC.

A typical data synchronization flow using the CeRemote.dll to retrieve a PDB
database table from the PocketPC, then send an updated PDB table back to the PPC,
would go something like this:

• retrieve the PDB table from the PPC using GetFile

• convert the PDB table to MDB/DBF using SFConvertPDB

• manipulate that data in your PC database, creating an updated DBF/MDB

• convert the updated DBF/MDB table to PDB using SFConvertPDB

• download that updated PDB to the PPC using SendFile

Satellite Forms CeRemote.dll methods
The Satellite Forms CeRemote.dll provides methods that allow you to copy files to
and from the handheld device and the desktop computer, as well as additional
commands to create folders, check if files exist, and so on. The methods included in
the CeRemote.dll are described in the following pages.

The following table provides an overview of the Satellite Forms CeRemote.dll
methods:

Table 8.7 Satellite Forms CeRemote.dll methods

Method Description

SendFile Sends a file from the PC to the Pocket PC without conversion.

GetFile Retrieves a file from the Pocket PC to the desktop PC without
conversion.

SendTable (Obsolete - do NOT use).

GetTable (Obsolete - do NOT use).

RemoteInit Initializes the connection between the Pocket PC and the
desktop PC in order to prepare for file transfer or other methods.

RemoteDeInit De-initializes the connection between the Pocket PC and PC.

RemoveFile Deletes a file from the Pocket PC.

CeFileExists Checks whether a file exists on the Pocket PC.

CeDirectoryExists Checks whether a directory exists on the Pocket PC.

Integrating with your Database
ActiveSync without ActiveX

221

File Transfer methods

SendFile

GetFile

SendTable

CeMakeDirectory Creates a directory on the Pocket PC.

Table 8.7 Satellite Forms CeRemote.dll methods

Method Description

Function SendFile(PCFile As String, PDAPath As String) As Integer
Sends a file from the PC to the Pocket PC without conversion.
Parameters PCFile The full path and file name of the file on the desktop PC

to be sent to the Pocket PC handheld.
PDAPath The full path to copy the file to on the Pocket PC.

Return Value Result code as Integer. A result code of 0 indicates the command completed
successfully.

Comments Use this function to send PDB databases from the desktop PC to the
Pocket PC handheld. This function sends files of any type from the PC to the
Pocket PC without performing any conversion.
Note: In the SatSyncPPC sample application this function is declared with the
name SF_PPCSendFile.
Use the SFConvertPDB Utility to convert handheld <--> desktop databases.

See Also GetFile

Function GetFile(PDAFile As String, PCPath As String) As Integer
Retrieves a file from the Pocket PC to the desktop PC without conversion.
Parameters PDAFile The full path and file name of the file on the Pocket PC

to be copied to the desktop PC.
PCPath The full path to copy the file to on the desktop PC.

Return Value Result code as Integer. A result code of 0 indicates the command completed
successfully.

Comments Use this function to get PDB databases from the Pocket PC to the
desktop PC. This function gets files of any type from the Pocket PC to the
desktop PC without performing any conversion.
Note: In the SatSyncPPC sample application this function is declared with the
name SF_PPCGetFile.
Use the SFConvertPDB Utility to convert handheld <--> desktop databases.

See Also SendFile

Comments Obsolete: Do NOT use; use PDB databases and SendFile function
instead.

See Also SendFile

Satellite Forms 8
Development Guide

222

GetTable

Other CeRemote.dll methods

RemoteInit

RemoteDeInit

RemoveFile

Comments Obsolete: Do NOT use; use PDB databases and GetFile function
instead.

See Also GetFile

Function RemoteInit(iWait As Integer) As Boolean
Initializes the connection between the Pocket PC and the desktop PC in order to prepare for
file transfer or other methods.
Parameters iWait The time in milliseconds to wait for the connection to be

established.
Return Value Result code as Boolean. A result code of True indicates the command

completed successfully, False indicates the connection could not be
established (for example, the Pocket PC was not attached to the PC).

Comments Use this function first before any file transfer or other methods. You must
establish the remote connection using this function before any of the other
methods can be used. Use RemoteDeInit to close the connection when
finished transferring files.
Note: In the SatSyncPPC sample application this function is declared with the
name SF_PPCInitConnection.

See Also RemoteDeInit

Sub RemoteDeInit
De-initializes the connection between the Pocket PC and the desktop PC once you are done
using the file transfer or other methods.
Parameters None
Return Value None
Comments Use this method last when you have completed all of the file transfer and

other methods. You must de-establish the remote connection using this
method when finished transferring files.
Note: In the SatSyncPPC sample application this method is declared with the
name SF_PPCDeInitConnection.

See Also RemoteInit

Function RemoveFile(PDAFile As String) As Integer
Deletes a file from the Pocket PC.
Parameters PDAFile The full path and file name of the file on the Pocket PC

handheld to be deleted.
Return Value Result code as Integer. A result code of 0 indicates the command completed

successfully.
Comments This function deletes files of any type from the Pocket PC.

Note: In the SatSyncPPC sample application this function is declared with the
name SF_PPCDeleteFile.

See Also CeFileExists, CeDirectoryExists, CeMakeDirectory

Integrating with your Database
ActiveSync without ActiveX

223

CeFileExists

CeDirectoryExists

CeMakeDirectory

Satellite Forms CeRemote.dll result values
Most of the Satellite Forms CeRemote.dll methods are functions that return a numeric
value indicating the result.

The following table provides a list of the Satellite Forms CeRemote.dll result values:

Function CeFileExists(PDAFile As String) As Boolean
Checks whether a file exists on the Pocket PC.
Parameters PDAFile The full path and file name of the file on the Pocket PC

handheld to be checked.
Return Value Result code as Boolean. A result code of True indicates the file exists, False

indicates the file was not found.
Comments Note: In the SatSyncPPC sample application this function is declared with the

name SF_PPCFileExists.
See Also RemoveFile, CeDirectoryExists, CeMakeDirectory

Function CeDirectoryExists(PDAPath As String) As Boolean
Checks whether a directory exists on the Pocket PC.
Parameters PDAPath The full path of the directory on the Pocket PC

handheld to be checked.
Return Value Result code as Boolean. A result code of True indicates the folder exists, False

indicates the folder was not found.
Comments Note: In the SatSyncPPC sample application this function is declared with the

name SF_PPCDirExists.
See Also CeFileExists, RemoveFile, CeMakeDirectory

Function CeMakeDirectory(PDAPath As String) As Boolean
Creates a directory on the Pocket PC.
Parameters PDAPath The full path of the directory on the Pocket PC

handheld to be created.
Return Value Result code as Boolean. A result code of True indicates the folder was

created, False indicates the folder was not created (for example it may already
exist).

Comments Note: In the SatSyncPPC sample application this function is declared with the
name SF_PPCMakeDirectory.

See Also CeFileExists, CeDirectoryExists, RemoveFile

Table 8.8 Satellite Forms CeRemote.dll function result values

Result Description

0 No error, the function completed successfully.

1 General unspecified error

Satellite Forms 8
Development Guide

224

The next step Phase 2 of creating your Satellite Forms application is now complete. The next phase
is covered in Deploying your Application, on page 229 .

2 Connection error

3 Create File error (file may already be open on PDA)

4 Error deleting file

5 File does not exist

6 Could not find the Filter reg key

7 Directory does not exist

8 Unable to load DLL

9 Unable to load function

10 Open file error (file may already be open on PC)

11 Read error

12 Unable to send

13 Write error

Table 8.8 Satellite Forms CeRemote.dll function result values

Result Description

Using Satellite Forms on Handheld Devices
Starting the Satellite Forms engine

225

Chapter 9
Using Satellite Forms on Handheld
Devices

This chapter explains how to use the Satellite Forms Engine to run your applications
on handheld devices.

Starting the Satellite Forms engine
You can download many Satellite Forms applications to the same handheld device.
When you start the Satellite Forms SDK Runtime Engine on the handheld device, you
see a list of all the available Satellite Forms applications. With the Satellite Forms
Redistribution Kit (RDK) you can create an icon that launches a Satellite Forms
application without having to tap the Satellite Forms icon first.

Palm OS Procedure Use the Satellite Forms Engine to launch a Palm application on your
handheld device:

1 Turn on your handheld device.

2 Tap the Applications icon. Icons for all the installed handheld applications appear.

3 Tap the Sat. Forms icon. The list of installed Satellite Forms applications appears.

Pocket PC Procedure Use the Satellite Forms engine to launch a Satellite Forms Pocket PC
application

1 Tap Start, tap Programs, and then tap Satellite Forms.

A list of the installed Satellite Forms applications appears.

2 Tap the name of the Satellite Forms application you want to run.

Procedure Use the Satellite Forms Engine to launch a Pocket PC application on your
handheld device:

Note The Satellite Forms runtime engine, SatForms80.exe, is installed in the
Windows directory on the handheld device. The Satellite Forms icon in the Programs
group is a shortcut to the engine.

Satellite Forms 8
Development Guide

226

1 Tap Start, tap Programs, and then tap File Explorer.

2 Browse to the folder that contains the Satellite Forms application (a PDA file) or
the folder that contains the Satellite Forms application launcher icon (a PRC file).

3 Tap <appname>.PDA or <appname>.EXE to launch the application.

Procedure Create a shortcut to an application on the Start menu

1 Locate <appname>.PDA or <appname>.EXE for the application for which you
want to create a shortcut.

2 Tap and hold the icon for the file to display the context menu and then tap Copy.

3 Tap Start, tap Programs, and then tap File Explorer.

4 Using File Explorer, browse to \My Device\Windows\Start Menu

5 Tap the Edit menu on the menu bar and then tap Paste Shortcut.

6 Rename the shortcut, if desired.

Using the Satellite Forms Applications list
Using the Satellite Forms applications list, you can open an application or delete an
application. You can also display the About Satellite Forms dialog box.

Opening an application Procedure Open a Satellite Forms application on a Palm handheld device

1 Tap the Applications icon to display the handheld device’s application picker
screen.

2 Tap the Sat. Forms icon to display the list of installed Satellite Forms applications.

3 Tap the desired application name listed under Select Application to Run.

Palm OS Procedure Delete a Satellite Forms application

1 Tap the Sat. Forms icon. The list of installed Satellite Forms applications appears.

2 Tap the handheld device’s Menu icon.

3 Tap Delete App.

4 Tap the application you want to delete from the Satellite Forms Application list.

5 Tap OK to confirm the deletion.

Palm OS The About Satellite Forms dialog box shows which version of the Satellite Forms
Engine is installed on the handheld device.

Procedure Display the About Satellite Forms dialog box on a Palm OS device:

1 Tap the Applications icon to open the handheld device’s applications list.

2 Tap the Sat. Forms icon.

3 Tap the handheld device’s Menu icon.

4 Select Options > About from the menu to display the About Satellite Forms dialog
box.

5 Tap OK to close the dialog box.

Using Satellite Forms on Handheld Devices
Using the Satellite Forms Applications list

227

Palm OS Satellite Forms application menus
When you run a Satellite Forms application, the application’s initial form opens. For
information about setting the initial form, see Project Properties dialog box on
page 83.

Tap the handheld device’s Menu icon to display the three menus available for use
with a running application: Records, Edit, and Options. The Records menu list is
automatically displayed when you tap the handheld device’s Menu icon. You can use
the options on any of these menus by tapping them with the stylus or writing
Command Stroke plus the assigned command letter in the Graffiti writing area.

The following tables list and describe the menu options available on every Satellite
Forms application menu:

Table 9.1 Satellite Forms Records menu

Command Command
Letter

Action

Goto First F Goes to the first record of the linked table.

Goto Prev R Goes to the previous record of the linked table. A beep sounds if
there are no previous records.

Goto Next N Goes to the next record of the linked table. A beep sounds if there
are no more records.

Goto Last L Goes to the last record of the linked table.

Create T Creates a new record in the linked table and displays it. The form’s
properties must have the Create Record permission enabled.

Delete D Deletes the current record of the linked table. The form’s
properties must have the Delete Record permission enabled.

Table 9.2 Satellite Forms Edit menu

Menu
Item

Command
Letter

Action

Undo U Reverses the last action (cut/copy/paste).

Cut X Cuts the selected item and places it on the clipboard.

Copy C Copies the selected item onto the clipboard.

Paste P Pastes the clipboard contents at the cursor.

Select All S Selects all of a control’s contents.

Keyboard K Displays the handheld’s on-screen keyboard. The keyboard only
appears if the current form contains Edit or Paragraph controls.
Otherwise, a beep sounds.

Graffiti G Opens Graffiti Help, a series of screens that show the complete
Graffiti penstroke character set.

Satellite Forms 8
Development Guide

228

Table 9.3 Satellite Forms Options menu commands

Menu
Item

Command
Letter

Action

Exit Q Exits the Satellite Forms application and displays to the Satellite
Forms applications list.

About Displays the About Satellite Forms dialog box.

Deploying your Application
Overview

229

Chapter 10
Deploying your Application

This chapter lists and describes steps required for deploying your Satellite Forms
application. It is organized into the following sections:

• Overview of deploying applications for Palm OS and Pocket PC devices

• Step-by-step instructions on deploying an application for Palm OS handheld
devices

• Step-by-step instructions on deploying an application for Pocket PC handheld
devices

• Guidelines for creating a custom installer for your application

Overview
After you have developed and tested your Satellite Forms application, the next step is
to distribute your application to your end users. Satellite Forms includes a Re-
Distribution Kit (RDK) that contains software components and utilities to enable you
to easily deploy the application you created. This chapter contains details about
working with the RDK, including step-by-step instructions on how to use it to deploy
your application smoothly and special considerations for the deployment phase.

Deploying your application is the third and final phase of developing your Satellite
Forms application. This phase involves the following steps, separated by target
platform below:

Procedure Deploying Palm OS applications

1 Create and assign a launcher icon to your application.

2 Change the default creator ID to a unique creator ID.

3 Modify the HotSyncStatus Handler.

4 Update applications created with earlier version of Satellite Forms.

5 Set up the redistribution kit.

6 Install Satellite Forms RDK components on your end user’s desktop computers.

7 Install the Satellite Forms runtime engine on your end user’s handheld devices.

8 Install your application on your end user’s handheld devices.

Satellite Forms 8
Development Guide

230

Procedure Deploying Pocket PC applications

1 Create and assign a launcher icon to your application.

2 Rebuild the application in MobileApp Designer.

3 Modify the ActiveSync event handler application.

4 Set up the redistribution kit.

5 Install Satellite Forms RDK components on your end user’s desktop computers.

6 Install the Satellite Forms runtime engine on your end user’s handheld devices.

7 Install your application on your end user’s handheld devices.

Deploying Palm OS applications
This section lists and describes the steps to deploy a Palm OS application. After you
have completed the steps in this section, your application will be distributed to your
end users and your development cycle will be complete.

Integrated Runtime Starting with Satellite Forms Version 8, a new integrated runtime engine feature has
been added to improve application deployment. This feature works by combining your
application launcher icon with the Satellite Forms runtime engine executable, to create
a customized runtime branded specifically for your application. Previously, the
launcher icon app was a small “loader” customized with your icon that would load the
standard RDK runtime engine to run your application. Now the launcher icon and
runtime engine are integrated together into one.

The integrated runtime improves app deployment by having one less file to install as a
part of your package. More importantly, it makes your deployed app more robust by
reducing the chance that installing another Satellite Forms application might affect
your installed application by overwriting the runtime engine with a different version.
For the Palm OS platform, the RDK runtime engine and you icon are combined into
your application PRC file.

In order to have MobileApp Designer generate an integrated runtime engine for your
application, you must specify a proper launcher icon in the Project Properties, as
described below..

Create and assign application icons
You can specify large and small icons in color or black and white for your application.
The icons for your project will appear as small images that represent your application
to end users on their devices. This section includes information on creating and
assigning the icons to your application.

For an application with a complete set of icons, create the following:

• Large black and white icon: 31x21 pixels. Required for every application.

• Small black and white icon: 15x9 pixels.

• Large color icon: 31x21 pixels.

• Small color icon: 15x9 pixels.

Deploying your Application
Deploying Palm OS applications

231

• Large high density color icon: 62x42 pixels.

• Small high density color icon: 30x18 pixels.

Caution Your application must have the black and white large (31x21) icon associated
with the project before it is compiled and distributed. Omitting this icon will cause
problems with your application. Although not recommended, the small icon and color
icons can be omitted. A “missing” icon will appear where the images would have been
in your application on the device.

Guidelines to follow when creating your icons:

• All files must be in bitmap format (bitmap files have a .bmp extension).

• After you have chosen a name for the large black-and-white icon, all other icons
for your application must match the same naming convention. For example, if you
name the large black and white icon MyIcon.bmp, you must name the rest of the
icon files are shown below:

Small black and white icon: MyIcon-Small.bmp

Large color icon: MyIcon-Color.bmp

Large high density color icon: MyIcon-Color-HD.bmp

Small color icon: MyIcon-Small-Color.bmp

Small high density color icon: MyIcon-Small-Color-HD.bmp

• All icon files for your application should be placed together in the same directory,
ideally in a directory specifically for icons or images associated with your
application. Satellite Forms will automatically “search” for missing icon files in
the directory where the large black and white icon is located.

• The conversion of a color icon to a Palm icon can cause the icon to look different
on the device than in the program you use to create the icon. Avoid this problem
by using Palm’s official color palette for Palm OS devices. Satellite Forms also
includes two color icon template files you can edit to create your own color icons.
Navigate to the \Templates directory and make a copy of the Template-
Color.bmp, Template-Color-HD.bmp, Template-Small-Color.bmp, and
Template-Small-Color-HD.bmp files. Paste them into your project directory and
edit them with a image editing tool to create your own icon.

• Most software that will generate a bitmap (.bmp) file will work for creating icons.
Many computers running the Microsoft Windows operating system will already
have the Microsoft Paint program included. This program will generate bitmaps
you can use as icons for your application. Some tips on creating icons with this
common program are given below as a convenience; refer to the complete
Microsoft documentation for complete details on the program:

Tips for creating icons – Open one of the template files noted above in Microsoft Paint (File<Open).

– Draw the icon within the box. Set the background to Transparent. Areas that
are set to transparent will be invisible on the handheld device. The default
color indicating transparency in Microsoft Paint is typically bright green.

– The pencil tool is frequently the best tool for creating an icon; zoom in if
needed.

Satellite Forms 8
Development Guide

232

– The easiest way to change to a different color from the official Palm palette
(the color blocks on the bottom of the template) is with the Color Picker tool.
Select the Color Picker, then click to select the color you want to use in the
Palm palette. Remember to avoid using any colors other than those in the
Palm palette.

– When saving your icon, there are several options available. Save a black and
white icon as a Monochrome Bitmap. Save a color icon as a 24-bit Bitmap.

Caution Do not resize the template file. Each template file is already the correct size.

Change the default creator ID
Each Palm application must have a unique Creator ID. Making sure that your
application has a unique Creator ID prevents potential conflicts with other
applications on your users’ devices. If your application has the Creator ID “SMSF”
you must obtain your own Creator ID; this is the default value reserved for Satellite
Forms. Unique Creator ID’s can be obtained from the ACCESS Systems Americas
(formerly PalmSource, Inc.) website free of charge.

Once you have a unique Creator ID, you must associate it with your application and
rebuild the application.

Procedure Changing your Creator ID and rebuilding your application

1 Navigate to File<Project<Properties.

The Properties dialog box opens.

2 Type your unique Creator ID in the text box for Creator ID’s.

3 Save the project and rebuild to generate a new set of Palm binary files.

Your unique Creator ID is now part of your project.

Modify the HotSyncStatus Handler
Before you deploy your application on Palm OS devices, you must add a short section
of code to your HotSyncStatus handler. This will ensure that your application can
coexist with any other application on the device that was created with Satellite Forms.
A brief explanation of potential conflicts is given below, along with sample code.

Each application installed with the Satellite Forms RDK generates its own set of
HotSyncStatus events that are broadcast to all applications running on your server.
The Satellite Forms RDK engine also generates an additional set of notifications for
all applications installed with the RDK.

When you worked with the SDK engine during the testing step, you dealt exclusively
with the notifications generated by the SDK engine. The SDK engine is a simplified
tool for testing only; since there were no RDK applications installed on your handheld
device, you did not have to verify that the HotSyncStatus notifications were coming
from one of your applications. In an actual deployment environment, a precautionary
step is needed.

When deploying with the RDK, you must add a short section of code to the top of your
HotSyncStatus handler to check if a HotSyncStatus originated from your application.

Deploying your Application
Deploying Palm OS applications

233

The code should ensure that your HotSyncStatus event handler checks the
CreatorString property of the Satellite Forms ActiveX control.

If the CreatorString property does not match the creator ID you assigned to the icon
that launches your application, the event does not belong to your application and
should be ignored. Your HotSyncStatus handler should return immediately without
doing any further processing. A typical example of the simple code that needs to be
added to the top of your HotSyncStatus handler is given below, with MYAP
representing your unique Creator ID:

Example 10.1 HotSyncStatus handler deployment code

//Check if this event is coming from our application
//(assumes the creator id of the app is MYAP)

If (SatForms.CreatorString <> "MYAP") Then
//event not from our app - exit immediately

Exit Sub
End If

Update older applications
If you have released versions of your application that were created with an earlier
version of Satellite Forms, you will already have many of the redistribution steps
complete, but you need to take some extra steps to update your application. If this is
the first time you will be distributing your application, disregard this section and
continue to the next.

Following the procedure below will bring your application up-to-date with the current
Satellite Forms version.

Procedure Update your application to the current Satellite Forms version

1 Edit the Install.ini file[PRC_Files] section to specify the correct PDB and PRC
files for your application.

2 Modify your Install.bat batch file as follows:

RDKINST -instprc Install.ini -condpath SFrmCnxx.dll -crtreg
CRID -name "your application name" -restarths

Replace SFrmCnxx.dll with the correct DLL name from the following list:

• SF 4.0 and 4.1: SFrmCn40.dll

• SF 5.0 and 5.1: SFrmCn50.dll

• SF 6.0.x: SFrmCn60.dll

• SF 6.1: SFrmCn61.dll

• SF 7.x: SFrmCn70.dll

3 Modify your HotSync program to use new control and new API call improvements
in this version of Satellite Forms as follows:

a Replace the old ActiveX control with the new version included with your current
Satellite Forms version.

Satellite Forms 8
Development Guide

234

b Modify the CopyTableToPalmPilot and GetTableFromPalmPilot calls as shown:

CopyTableToPalmPilot(Filename As String,CreatorID As String, SDDI_Plugin_Name As
String, CreateFlag As Integer,VersionMajor As Integer,VersionMinor As Integer)

GetTableFromPalmPilot(Filename As String,CreatorID As String, SDDI_Plugin_Name
As String,CreateFlag As Integer,VersionMajor As Integer,VersionMinor As Integer)

Where the following term definitions apply:

• Filename: Full path to the intermediate database, either MDB or DBF. The file
name must be upper case.

Example: C:\MyApp\TABLE1.MDB

• CreatorID: Your application’s unique four character string Creator ID.

• SDDI_Plugin_Name: This should always beset to Sddi_PalmDB.dll

• CreateFlag: This should be set to 0 for most tables, but could be set to a
different value for read only tables, see Table Flag Values for the CreateFlag
Parameter on page 213 for complete details.

• VersionMajor: Your application’s major version number (i.e. 1.x).

• VersionMinor: Your application’s minor version number (i.e. 1.x).

Tip If you aren’t sure what your CreatorID, VersionMajor and VersionMinor values
are, open your application in MobileApp Designer, go to Edit > Project Properties,
and view the values in the Project Properties dialog.

When you have finished updating your API calls, they should resemble the
following:
call CopyTableToPalmPilot("C:\MyApp\ORDER.MDB","CRID",
"Sddi_PalmDB.dll",0,1,0)

call GetTableFromPalmPilot("C:\MyApp\ORDER.MDB","CRID",
"Sddi_PalmDB.dll,0,1,0)

With the following values applied:

• Table: Order and located at C:\MyApp folder

• CreatorID: CRID

• CreateFlag: 0

• Major version: 1

• Minor version: 0

4 Your update is now complete. Continue through the next sections to verify that
your updated application is ready to distribute.

Set up the redistribution kit
In this step, you will create several new directories and fill them with subdirectories
and file copied over from the Satellite Forms program files directory. When you are
finished, the new directories will contain all the redistributable components for your

Deploying your Application
Deploying Palm OS applications

235

application, including Palm OS-specific files, HotSync Handler files, and databases.
Your end users will have this new directory structure installed on their systems.

Caution Follow the instructions below carefully; the directory structure and naming
must match the directions given exactly for your installation to proceed smoothly.

Procedure Preparing the redistribution kit.

1 Create a new, stand-alone directory named Redistribution Kit.

2 Create two directories beneath the Redistribution Kit directory with the following
names:

• Palm

• HotSync Handler.

The directory structure has now been created.

Tip Navigating to the Satellite Forms Program Files directory now will make the rest
of the steps in this procedure easier, as you copy and paste files between the Satellite
Forms directories and your new redistribution directories. All pathnames given below
are from the root of the Satellite Forms directory.

The default location of the Satellite Forms program is C:\Satellite Forms 8\.

3 Copy all files and subdirectories from the following location:

\Redist\Common\Runtime Installer\Disk

Paste the contents into the new Redistribution Kit directory created in Step 1. If
you are using your own custom installer, place copies of your installer files in this
directory now.

4 In the Redistribution Kit directory created in Step 1, navigate to the following
location:

Redistribution Kit\program files\Satellite Forms Runtime for PCs\Palm

Locate, open, and edit the GeneralReadMe.txt file in a text editor. This is the
readme file that will be included in your application. Include any information your
users will need to know about your application.

Caution Do not change the name of the readme file. The readme must be named
GeneralReadMe.txt for the installer to function correctly.

Note Often, handheld device applications do not have any other product
documentation apart from the readme you provide. Make sure your users will have
any information they may need about installation, upgrading, uninstallation,
operation, troubleshooting, and contact information by adding it to the redistribution
readme. If your users will be upgrading, the readme is also a good place to notify your
user about the procedures they should follow before installing your application.

5 Copy all Palm PRC and PDB files from the following location:

\AppPkg\Palm (mmnn - CRID) Where mm is the major version number of your
application, nn is the minor version number, and CRID is your unique Creator ID.

Paste the PRC and PDB files into the new Redistribution Kit\Palm directory
created in Step 2.

Satellite Forms 8
Development Guide

236

Note that starting with Satellite Forms 8, if your application uses any PRC
extension files, those files will be included in your AppPkg folder along with the
other application PRC and PDB files. The integrated runtime engine PRC will also
be placed in the AppPkg folder. In previous versions the runtime engine and
extension PRC files had to be copied seperately.

6 Navigate to the following location:

\Redist\Palm

Copy the file named RDKInst.exe and paste it into Redistribution Kit\Palm
directory created in Step 2.

7 Using a text editor, create the Install.ini file that will install your application. The
Install.ini file is the configuration file that will control which files are included
during installation. If you need help getting started with your Install.ini file, a
sample Install.ini file is included with the Redist Work Order sample in the
\Samples\Redist\Work Order directory. An example file of a typical Install.ini
file is shown below:

Example 10.2 Sample Install.ini file
;
; Installer Section
;
; KEY DESCRIPTION
;
; EngWinTitlewindow title
; EngInstructuser instructions to appear on the installer dialog
;

[Installer]

EngWinTitle=Your Application Name Installer
EngInstruct=Ready to copy Your Application Name to your Palm device.\n\nPress the
"Install" button to continue or press "Cancel" to abort.
;
; PRC File Section
;
; Note: Create one key per PRC/PDB file to install. All files must be listed with
keys of the form 'PrcFileX', where X is consecutive integers starting with zero.
;
; KEY DESCRIPTION
;
; PrcFileX name of file to install (X starts at 0)
;

[PRC_Files]

PrcFile0 = Your_Application_Name.PRC
PrcFile1 = ECRID0000#Your_Application_Name.PRC
PrcFile2 = ECRID0000$Your_Application_Name.PDB
PrcFile3 = ECRID0000_TABLE1.PDB
PrcFile4 = ECRID0000_TABLE2.PDB
…
PrcFileN = ECRID0000_TABLEN.PDB

Deploying your Application
Deploying Palm OS applications

237

‘If you are using extensions, specify them here.
‘eg. PrcFileX = SFE_Strings.prc

8 Create the Install.bat file that will register your application’s Creator ID with
HotSync Manager. If you need help getting started with your Install.bat file, a
sample Install.bat file is included with the Redist Work Order sample in the
\Samples\Redist\Work Order directory.

Your Install.bat file should resemble the following example:

Example 10.3 Sample Install.bat file
rdkinst install.ini -instprc -crtreg CRID -condpath SFrmCn80.dll -name
"Application Name" -restarths

Where the following term definitions apply:

• install.ini: Contains install rules.

• instprc: Instructs RDKInst to install Palm files using Install.ini rules file.

• crtreg CRID: Registers a HotSync custom conduit for Creator ID CRID.

• condpath SFrmCn80.dll: Specifies the conduit DLL to use for CRID (do NOT
specify a path, just the DLL filename).

• name “Your application name": Specifies the name for this new custom
conduit.

• restarths: Instruct RDKInst to restart HotSync.

9 Copy your backend database, all intermediate database files, and your HotSync
Handler program into the Redistribution Kit\Hotsync Handler folder created in
Step 2.

Note Intermediate databases are created by MobileApp Designer, and can be found at
the same level as your project source files.

10 Your application, consisting of the new Redistribution Kit directory created in Step
1 and all files and subdirectories you added within the new directory, is now
complete and ready to distribute to your end users. Prepare your application for
distribution by completing one of the following steps:

• Network Installation: Copy the Redistribution Kit directory and all contents
onto a network hard drive.

• CD Installation:Copy the Redistribution Kit directory and all contents onto a
CD-ROM.

Distributing the application
This section provides step-by-step instructions on distributing your application to your
users.

Caution A well-planned deployment should include testing the distribution steps
below yourself, with a clean computer and device, before beginning distribution to a
wider user audience. At a minimum, you should confirm that your application installs
successfully on both the computer and the device, and that your HotSync Handler
functions correctly.

Satellite Forms 8
Development Guide

238

Verify end user system requirements
Your Satellite Forms application requires a variety of different minimum system
requirements to function smoothly. Verify that all system requirements given below
have been met by your user’s equipment before proceeding with installation. If you
cannot verify the system requirements for your end users, be sure that you transfer the
system requirements listed below to the general redistribution readme (see the readme
step in Preparing the redistribution kit.)

Desktop computer requirements

Satellite Forms has been tested with the following operating systems:

• Microsoft Windows Vista Business edition

• Microsoft Windows XP Professional edition

• Microsoft Windows 2000 Professional edition

• Microsoft Windows NT 4.0 Workstation with SP 6

• Windows ME

• Windows 98 Second Edition

Handheld device requirements

The following list describes the recommended hardware and software minimum
requirements for the handheld devices on which the Satellite Forms runtime engine is
installed.

• Palm OS 3.5 or later

• 1 MB available main memory

• HotSync 3.01 or higher

MSI executable files
End users running Windows 9x or Windows NT need specific MSI executable files
before the Satellite Forms components are installed on their computer (newer versions
of Windows have these Windows Installer files already present). Run the executable
files on each computer running these two operating systems before proceeding with
installation. The appropriate executable files are included in the RDK at the following
locations:

Windows 9x: \MsiInstall 9x

Windows NT: \MsiInstallNT

MDAC requirements
Microsoft Data Access Components (MDAC) is software that Satellite Forms uses to
interface with transfer tables. End users running any of the following software will
need to upgrade to MDAC version 2.6 SP1, or later:

• Windows 98

• Windows NT

• Windows 2000

Deploying your Application
Deploying Palm OS applications

239

• Access 2000

End users running Windows XP or Access 2002 will already have a compatible
MDAC version.

Upgrade each computer to the appropriate version before proceeding with installation.

Note If you install or update the MDAC version, you may also need to update the
Microsoft Jet 4.0 engine. Refer to the Microsoft product documentation and website
for additional details.

Upgrading previous releases of your application
If your users will be upgrading from earlier versions of your application, the following
steps must be completed before installing the new version:

Procedure Preparing user computers for a new application version

1 Unregister the older application’s Creator ID with HotSync manager.

Satellite Forms 3.x: use RDKInstS.exe

Satellite Forms 4.x or higher: use RDKInst.exe

To unregister the older version of your application, create a batch file with the
following command lines:

Satellite Forms 3.x: RDKInstS -remreg CRID

Satellite Forms 4.x or higher: RDKInst -remreg CRID

Where CRID is the older application’s Creator ID.

If the earlier version of your application was installed with a custom installer, undo the
registries created by your custom installer.

Caution Failure to unregister the older application’s Creator ID can cause registry
conflict between old and new versions of your application. As a result, your HotSync
program will not receive any events that come from your application.

2 Uninstall any Satellite Forms redistribution components that were installed on the
user’s computer with the earlier version of the application. On a Windows user
computer, uninstallation can be completed by navigating to Start > Settings >
Control Panel > Add or Remove Programs and selecting the appropriate
applications from the list of installed programs. If you are using a custom installer,
use your installer to complete the uninstall.

If you cannot verify that previous releases have been uninstalled, be sure to transfer
the information above to the general redistribution readme (see the readme step in
Preparing the redistribution kit.).

Installing redistributable components
You end users will need to transfer information between your application on their
handheld device and their computer. The install process for your application includes
installing several components on your end user’s desktop computers. This step must
be completed before installing the application itself on your user’s handheld devices.

Satellite Forms 8
Development Guide

240

These redistributable components are sometimes referred to as the Satellite Forms
Runtime for PCs. In previous releases this package was named the Satellite Forms
Runtime for Palm, but with the adoption of the Palm DB (PDB) handheld database
format for the Pocket PC platform the runtime package has been renamed.

The Satellite Forms Runtime for PCs can be installed on the end user’s computer
interactively (in which the end user sees the SatForms installer prompts and must click
several buttons to either complete or cancel the installation) or silently (in which the
components are installed and registered without presenting any prompts or interface to
the end user). Select the interactive or silent install method according to your needs,
described below.

Installing redistributable components interactively

Complete the following procedure on each user’s computer.

Procedure Interactively install redistributable components on user computers

1 Complete the option that applies to your distribution format:

• Network install: Navigate to the Redistribution Kit directory and double-click
Setup.exe.

• CD-ROM install: Double-click Setup.exe at the root of the CD.

• Custom installer: Run your installer.

The installer program starts.

2 Follow the directions of the installer to complete installation of the Satellite Forms
redistributable components. Repeat steps 1 and 2 on each user computer.

Your end user’s computers now have the necessary components to communicate
with your application.

Installing redistributable components silently

Complete the following procedure on each user’s computer.

Procedure Silently install redistributable components on user computers

1 Use the Windows Start > Run function to run the setup program with some
commandline switches that specify silent install mode. Click on Start > Run and
then click the Browse button which opens a standard file selection dialog. Navigate
to the Redistribution Kit directory on your installation media (eg. CD or network
folder), click on Setup.exe, then click on Open. That will return you to the Run
dialog with the full path to the Setup.exe file shown in quotes.

2 Move the cursor to the end of that line without overwriting the path to Setup.exe,
and add the commandline switches /S /v/qn to specify the silent mode, leaving a
single space after the end quote, before the switches. You must enter these
commandline switches exactly as shown: the quoting and spacing matters.

An example commandline shown in the Run dialog, assuming a CD install media
using drive letter X: would be:

“X:\Redistribution Kit\Setup.exe” /S /v/qn

Deploying your Application
Deploying Palm OS applications

241

3 Click on OK. The Run dialog will close, and the installer program will silently
install and register the Satellite Forms redistributable components on the end user’s
PC without any prompting or interface.

4 Repeat step 1 on each user computer.

Your end user’s computers now have the necessary components to communicate
with your application.

Tip This silent install procedure could easily be accomplished using a batch file
instead of using the Start > Run dialog. You could create a RDKSilentInstall.bat batch
file, located in the \Redistribution Kit folder, with these commands:

@REM Install the RDK components silently

Setup.exe /S /v/qn

You would navigate to the \Redistribution Kit folder and double click on the
RDKSilentInstall.bat file to run it, performing the install silently.

Installing your application on the device
This is the final step in deployment of your application. In this step, you will be
installing your application on your user’s handheld devices.

Procedure Installing your application on the device

1 On the user’s computer, navigate to the Redistribution Kit/Palm folder you
installed in the Interactively install redistributable components on user computers
step.

2 Double-click the Install.bat file.

A list of HotSync user names appears.

3 Select the correct username and allow the installation to run to completion.

4 At the end of installation, the HotSync Manager restarts automatically.

Note If the user has configured their HotSync Manager to prompt for Exit
confirmation before closing, the HotSync Manager will not be able to close and restart
automatically. Have the user stop and restart the HotSync Manager manually after
installation is complete.

5 After the HotSync Manager has been restarted, verify that your application appears
on the handheld device and your application’s name appears in the Custom Conduit
list of the HotSync Manager on the user’s desktop computer.

6 Copy your Hotsync Handler program onto the user’s hard drive, or create a batch
file to copy the HotSync Handler directory automatically onto the user’s hard
drive.

Installation of your application is complete. Your users can begin using the
application.

Satellite Forms 8
Development Guide

242

Working with the Palm OS install utility
The Palm OS install utility is a file-driven generic installer application that is provided
to help simplify installing the Satellite Forms engine and application components on
your end user’s computer. The install utility, RdkInst.exe, is located in the following
directory:

\Redist\Palm\

The install utility can help you complete the following tasks:

• Install and register the Satellite Forms conduit with the Palm HotSync Manager.

• Uninstall and unregister the Satellite Forms conduit with HotSync Manager (for
uninstallation).

• Programmatically restart HotSync Manager so that changes made to the registry
take effect.

• Install any number of native files (.PRC or .PDB).

Generally, you will call the install utility from your own installation program to take
care of the details of installing and configuring the Satellite Forms conduit, and
installing the Satellite Forms engine, your application icons, and your application to a
handheld device. Before any files can be installed to the device, the device must first
be connected to the HotSync manager, because all files are installed through
performing a HotSync.

The install utility is controlled through command line switches and a configuration
file. Command line switches are used to request a particular task . For some switches,
the configuration file supplies additional data on the task to perform. A usage example
and list of command line switches is given below:

Usage: RDKINST configuration-file [command-line_switch]

• crtreg id: Create a HotSync registry entry with creator id = id. This switch
registers the Satellite Forms conduit with the HotSync Manager. It also associates
the specified Creator ID with the conduit. This switch is used when deploying to
third parties; you should supply the Creator ID supplied to you by PalmSource.
The path to the conduit must be specified in the configuration file or with the –
condpath switch. The HotSync Manager must be restarted after using this
command (see restarths).

• remreg id: Remove HotSync registry entry with creator id = id. (Use to undo –
crtreg id when uninstalling.) The HotSync Manager must be restarted after using
this command (see restarths).

• instprc: Install .PRC and/or .PDB files. This switch instructs the install utility to
install the .PRC/.PDB files listed in the configuration file. The install utility will
generate a request to the end user for a HotSync to be performed, and the install
utility will continue to run until all files have been installed on the handheld
device. When used with noprcwait, the install utility will not wait until all have
files have been installed to shut down.

• noprcwait: Do not wait for HotSync to install .PRC/.PDB files. This switch is
used in conjunction with –instprc to direct the install utility to prepare the

Deploying your Application
Working with the Palm OS install utility

243

HotSync manager so that application files will start installing with the next
HotSync session, but not to wait for the installation to complete.

• quiet: Do not display informational messages. Informational messages are
messages that are not due to errors.

• restarths: Restart HotSync Manager. This switch is used to stop and restart the
HotSync Manager. This step is necessary whenever a change is made to the
HotSync Manager’s registry entries. The HotSync Manager must be restarted after
using the -crtstdreg, -remstdreg, -crtreg and -remreg switches.

• condpath <path>: Path to the Satellite Forms conduit. If this switch is not
specified, the install utility will obtain the condpath setting from the configuration
file. Despite the condpath name, you should specify the name of the conduit DLL
without providing a path, eg. SFrmCn80.DLL. The install utility only needs the
condpath value when you use the -crtstdreg or -crtreg switch.

• sddi <db-engine>: Specifies which device database engine to use. If this switch is
not specified in the command line or configuration file, the install utility will
automatically use the SDDI_PalmDB.dll plug-in included with Satellite Forms.

• crtstdreg: Create standard HotSync registry entries. This switch registers the
Satellite Forms conduit with the HotSync Manager. It also associates the Satellite
Forms reserved Creator IDs with the conduit. The path to the conduit must be
specified in the configuration file or with the –condpath switch. Since it uses the
Satellite Forms Creator IDs, it can only be used with applications deployed
internally. Applications deployed externally should use crtreg id. The install
utility will need the path to the conduit when using this switch (see condpath
<path>). The HotSync Manager must be restarted after using this command (see
restarths).

• remstdreg: Remove standard HotSync registry entries. (Use to undo –crtstdreg
when uninstalling.) The HotSync Manager must be restarted after using this
command (see restarths).

• ? or –help: Display help information.

Some commonly used switch combinations are shown below:

RDKINST install.ini -instprc

This switch will install the Satellite Forms engine, your application icons, and the
application itself on your end users handheld device.

This set of switches is useful when you are going to install the Satellite Forms engine
and your application to many handheld devices. Simply place each target handheld
device in the cradle and run the install utility with these switches.

Note The functionality performed with these switches can be achieved directly from
your PC application through methods of the ActiveX control. You can install PRC and
PDB files with InstallPrcFileToPalmPilot.

RDKINST install.ini -condpath SFRMCN80.dll -crtreg xxxx -restarths

After you install all the redistributable Satellite Forms components on the end user’s
computer, run the install utility with these switches to register the conduit with the
HotSync Manager. In addition, the creator ID "xxxx" of your application will be
associated with the conduit and the HotSync Manager will be restarted so the changes

Satellite Forms 8
Development Guide

244

take effect. Typically, this procedure is performed one time, during installation of
your application.

Deploying Pocket PC applications
This section lists and describes the steps to deploy a Pocket PC application. After you
have completed the steps in this section, your application will be distributed to your
end users and your development cycle will be complete.

Integrated Runtime Starting with Satellite Forms Version 8, a new integrated runtime engine feature has
been added to improve application deployment. This feature works by combining your
application launcher icon with the Satellite Forms runtime engine executable, to create
a customized runtime branded specifically for your application. Previously, the
launcher icon app was a small “loader” customized with your icon that would load the
standard RDK runtime engine to run your application. Now the launcher icon and
runtime engine are integrated together into one.

The integrated runtime improves app deployment by having one less file to install as a
part of your package. More importantly, it makes your deployed app more robust by
reducing the chance that installing another Satellite Forms application might affect
your installed application by overwriting the runtime engine with a different version.
For the Windows Mobile/Pocket PC platform, the EXE runtime engine and your icon
are combined into your application EXE file. The runtime engine DLL file is still
required however, and is not integrated with the icon file.

In order to have MobileApp Designer generate an integrated runtime engine for your
application, you must specify a proper launcher icon in the Project Properties.

Create and assign application icons
You can specify large and small icons for your application. The icons for your project
will appear as small images that represent your application to end users on their
devices. This section includes information on creating and assigning the icons to your
application. The Mobile AppDesigner program will also generate a launcher icon for
your application automatically, discussed below.

For an application with a complete set of icons, create the following:

• Large icon: 32x32 pixels. Utilized for the Large Icon view setting on the handheld
device.

• Small icon: 16x16 pixels. Utilized for the List View setting on the handheld
device and also in the Start menu.

If you want MobileApp Designer to generate a custom launcher for your application
using your own icon, you have two options. You can use a set of small and large color
bitmap files, or you can use a multi-image Winodws ICO icon file. The option to use
bitmap files instead of an ICO file is new with Satellite Forms 8.

To use multiple bitmap files, the large icon bitmap must be 32x32 pixels in size, and
16 or 256 colors. The small bitmap should be 16x16 pixels, 16 or 256 colors. The
small icon needs to be named the same as the large icon, with a -Small filename

Deploying your Application
Deploying Pocket PC applications

245

suffix. When you specify the large icon filename, MobileApp Designer will look for
the -Small file automatically in the same folder.

To use a multi-image Windows ICO icon file instead of bitmaps, follow the steps
below:

Guidelines to follow when creating your icons:

• All files must be in Windows icon format (icon files have a .ico extension).

• Icons should be named YourAppName.ico, where YourAppName is the name of
your application project (*.sfa) file. Note that this can be different than the Name
of Application in the project properties.

For general tips on creating icons using a common software program, see the list in the
Create and assign application icons section of this chapter for Palm OS.

Create a launcher icon
Mobile AppDesigner can create an custom launcher for your application. Follow the
steps below to create a launcher icon:

Procedure Creating a launcher icon

1 Create a multi-image Windows icon file (icon files have a .ico extension) with two
.bmp files, one large (32x32) and one small (16x16).

2 Name the .ico file YourAppName.ico where YourAppName is the name of your
application project (*.sfa) file. Note that this can be different than the Name of
Application in the project properties.

3 Create an Images directory at the same level as your application source file (the
application source file will have a .sfa extension). Place YourAppName.ico in the
Images directory.

Tip Placing all the other images associated with your application, such as .bmp files,
in the Images directory will make your application easier to manage.

4 Rebuild your application.

Your launcher icon is now associated with your application. A launcher file is
created in the AppPkg target subfolder named NameOfApplication.EXE along with
the NameOfApplication.PDA file.

Tip An example of a completed launcher icon is also included with the Work Order
sample in \Samples\Projects\Work Order.

Create an application shortcut
A shortcut (.Lnk) file for your application EXE is also created in the AppPkg target
subfolder, named NameOfApplication.Lnk. This shortcut link file aids deployment by
making it easy to create an icon in the Programs folder on the Pocket PC that is a
shortcut to your application EXE file in your application folder. The user can just tap
on your icon in the Programs folder to launch your application. The shortcut .Lnk file
is created using the \My Documents\NameOfApplication\NameOfApplication.EXE
program path. If you deploy your application to a different folder, you’ll need to edit
the contents of the shortcut .Lnk file using any standard text editor, to change the
program path. See the KnowledgeBase article “How To Create a shortcut to your

Satellite Forms 8
Development Guide

246

PocketPC application” for more details on the .Lnk file format. The
NameOfApplication.Lnk file should be placed into the \Windows\Start
Menu\Programs folder on the Pocket PC. Note that the “.Lnk” filename suffix may
not be visible in Windows Explorer on the PC, as that is a reserved filename extension
that Windows usually hides on the PC.

Prepare the ActiveSync event handler application
Data synchronization between your application and the user’s desktop computer can
be handled by the Satellite Forms ActiveSync Control, which you can utilize in your
desktop application to transfer data back and forth when an ActiveSync is carried out.
This is conceptually similar to the use of a Hotsync Handler application for PalmOS
devices, but the methods and properties of the ActiveSync control are different than
the Hotsync control. Please refer to the Satellite Forms ActiveSync ActiveX control
for Pocket PC on page 214. Data synchronization can also be handled without using
the ActiveSync ActiveX control, by using the CeRemote.dll instead. Refer to
ActiveSync without ActiveX on page 219 for the details on that method.

The instructions below are relevant whether you are using the Satellite Forms
ActiveSync Control or the non-ActiveX DLL method.

Set up the redistribution kit
In this step, you will create a folder and fill it with files copied over from the Satellite
Forms program files directory, and your project folder. When you are finished, the
new folder will contain all the redistributable components for your application.

Caution Follow the instructions below carefully; the directory structure and naming
must match the directions given exactly for your installation to proceed smoothly.

Procedure Preparing the redistribution kit.

1 Create a new, stand-alone directory named Redistribution Kit.

2 Create a new directory beneath the Redistribution Kit directory named PocketPC.

The directory structure has now been created.

Tip Navigating to the Satellite Forms Program Files directory now will make the rest
of the steps in this procedure easier, as you copy and paste files between the Satellite
Forms directories and your new redistribution directories. All pathnames given below
are from the root of the Satellite Forms directory.

The default location of the Satellite Forms program is C:\Satellite Forms 8\.

3 Copy the SFrmAxPPC_Install.exe ActiveSync control installer file from the
following location:

\Redist\PocketPC

Paste the contents into the new Redistribution Kit directory created in Step 1.

4 Copy all files and subdirectories from the following location:

\Redist\Common\Runtime Installer\Disk

Paste the contents into the new Redistribution Kit directory created in Step 1.

Deploying your Application
Deploying Pocket PC applications

247

Note These redistributable components are required for synchronizing Satellite
Forms PDB databases on both the Palm OS and Pocket PC platforms.

5 Copy all files from the following location in your project folder:

\AppPkg\PocketPC (mmnn) Where mm is the major version number of your
application, nn is the minor version number. If you have used a different platform
target instead of PocketPC, then copy the files from that AppPkg subfolder instead
of the PocketPC (mmnn) folder.

Paste the files into the new Redistribution Kit\PocketPC directory created in Step
2.

Note that starting with Satellite Forms 8, if your application uses any SFX
extension files, those files will be included in your AppPkg folder along with the
other application EXE, PDA and PDB files. The integrated runtime engine EXE
will also be placed in the AppPkg folder. In previous versions the runtime engine
and extension SFX files had to be copied seperately.

6 Navigate to the following location in the Satellite Forms program folder:

\Redist\PocketPC

Copy the files named CeRDKInst.exe, CeRemote.dll, and SFConvertPDB.exe
and paste them into the Redistribution Kit directory created in Step 1.

7 Create the Install.ini file that will install your application in a text editor, and place
it in the Redistribution Kit folder. The Install.ini file is the configuration file that
will control which files are included during installation. An example file of a
typical Install.ini file is shown below:

Example 10.4 Sample Pocket PC Install.ini file
;;
; Installer Section
;
; Key Description
;
; EngWinTitle - Window title when installing engine.
; EngInstruct - User instructions that appear when installing application.
;
[Installer]
EngWinTitle = Your Application Installer
;
; FilesX Sections
;
; One or more group(s) of files to be copied to the device.
;
; Note: Create one key per file to install. All files must be listed with
; keys of the form FileX or TableX where X are consecutive integers starting
; with zero.
;
; Key Description
;
; DevDir - Device destination directory to put files during copy. If the
; directory string does not contain a leading backslash '\' then the
; destination directory will be relative to '\My Documents'. If the
; directory on the device does not exist, the directory will be created.

Satellite Forms 8
Development Guide

248

: FileX - File to be copied from the desktop to the device. These files are
; copied as is and do not get converted.
; X starts at 0.
;
[Files0]
DevDir = \Program Files\Your Application Name
File0 = PocketPC\YourAppName.EXE
File1 = PocketPC\YourAppName.PDA
File2 = PocketPC\DvSDDI_PPCPDB.DLL
File3 = PocketPC\SFE_Extension1.sfx
File4 = PocketPC\SFE_Extension2.sfx
File5 = PocketPC\ECRIDmmnn_TABLE1.PDB
File6 = PocketPC\ECRIDmmnn_TABLE2.PDB
…
FileN = PocketPC\ECRIDmmnn_TABLEn.PDB
;
;Files1 Section - shortcut file for Your Application Name
;installed to \Windows\Start Menu\Programs
[Files1]
DevDir = \Windows\Start Menu\Programs
File0 = PocketPC\Your Application Name.Lnk

As before, CRID in the ini file above would be replaced with your actual Creator ID,
mm would be replaced with your actual major version number, and nn would be
replaced with your actual minor version number.

Note For detailed information on CeRDKInst utility, refer to Working with the
Pocket PC install utility on page 252. For a sample Install.ini and Install.bat, refer to
the Redist Work Order sample in the \Satellite Forms 8\Samples\Redist\Work Order
directory.

Tip The Install.ini sample demonstrates the inclusion of a program shortcut link
(.Lnk) file, which creates a shortcut to your handheld application in the Programs
folder on the Pocket PC. This is a very useful addition as it makes it easier for the end
user to launch your application on the handheld. See the KnowledgeBase article “How
To Create a shortcut to your PocketPC application” for more information. Note that
MobileApp Designer creates the shortcut file using “\My Documents” as the base
folder for your application on the PDA: if you deploy to another base folder like the
“\Program Files” folder shown in the example above, you’ll need to edit the shortcut
.Lnk file accordingly.

8 Create the Install.bat file that will install your application (including the Satellite
Forms runtime engine) to the handheld, and place it in the Redistribution Kit
folder. Your Install.bat file could resemble the following example:

Example 10.5 Sample Pocket PC Install.bat file
@REM Install PDA application using CeRDKInst

CeRDKinst install.ini -instfiles

9 Your application, consisting of the new Redistribution Kit directory created in Step
1 and all files and subdirectories you added within the new directory, is now
complete and ready to distribute to your end users. Prepare your application for
distribution by completing one of the following steps:

Deploying your Application
Deploying Pocket PC applications

249

• Network Installation: Copy the Redistribution Kit directory and all contents
onto a network hard drive.

• CD Installation:Copy the Redistribution Kit directory and all contents onto a
CD-ROM.

Note The above instructions do not include the installation of a desktop application
that you will synchronize your handheld data with (via the SatForms ActiveSync
control). You must use an appropriate installation method for your desktop sync
application, in addition to these instructions for installing the Satellite Forms
components.

Distributing the application
This section provides step-by-step instructions on distributing your application to your
users.

Caution A well-planned deployment should include testing the distribution steps
below yourself, with a clean computer and device, before beginning distribution to a
wider user audience. At a minimum, you should confirm that your application installs
successfully on both the computer and the device, and that ActiveSync functions
correctly.

Verify end user system requirements
Your Satellite Forms application requires a variety of different minimum system
requirements to function smoothly. Verify that all system requirements given below
have been met by your user’s equipment before proceeding with installation. If you
cannot verify the system requirements for your end users, be sure that you transfer the
system requirements listed below to the general redistribution readme (see the readme
step in Preparing the redistribution kit.)

Desktop computer requirements

Satellite Forms has been tested with the following operating systems:

• Microsoft Windows Vista Business edition

• Microsoft Windows XP Professional edition

• Microsoft Windows 2000 Professional edition

• Microsoft Windows NT 4.0 Workstation with SP 6

• Windows ME

• Windows 98 Second Edition

Handheld device requirements

The following list describes the recommended hardware and software minimum
requirements for the handheld devices on which the Satellite Forms runtime engine is
installed.

• Pocket PC 2002, 2003 or 2003SE

• Windows Mobile 5.x for Pocket PC, including Phone Edition

• Windows Mobile 6.x Classic or Professional edition

Satellite Forms 8
Development Guide

250

• 10MB available main memory

• ActiveSync 3.5 or higher

Installing redistributable components
You end users will need to transfer information between your application on their
handheld device and their computer. The install process for your application includes
installing several components on your end user’s desktop computers. This step must
be completed before installing the application itself on your user’s handheld devices.

For Pocket PC applications, the redistributable components required include the
Satellite Forms ActiveSync Control and the Satellite Forms Runtime for PCs. In
previous releases this component package was named the Satellite Forms Runtime for
Palm, but with the adoption of the Palm DB (PDB) handheld database format for the
Pocket PC platform the runtime package has been renamed.

The Satellite Forms ActiveSync Control and Satellite Forms Runtime for PCs can be
installed on the end user’s computer interactively (in which the end user sees the
SatForms installer prompts and must click several buttons to either complete or cancel
the installation) or silently (in which the components are installed and registered
without presenting any prompts or interface to the end user). Select the interactive or
silent install method according to your needs, described below.

Installing redistributable components interactively

Complete the following procedure on each user’s computer.

Procedure Interactively install redistributable components on user computers

1 Complete the option that applies to your distribution format:

• Network install: Navigate to the Redistribution Kit directory and double-click
Setup.exe.

• CD-ROM install: Double-click Setup.exe at the root of the CD.

• Custom installer: Run your installer.

The installer program starts. Follow the directions of the installer to complete
installation of the Satellite Forms Runtime for PCs components.

2 Next, double-click on SFrmAxPPC_Install.exe to install the Satellite Forms
ActiveSync Control. Follow the directions of the installer to complete that
installation.

3 Repeat steps 1 and 2 on each user computer.

Your end user’s computers now have the necessary components to communicate
with your application.

Installing redistributable components silently

Complete the following procedure on each user’s computer.

Procedure Silently install redistributable components on user computers

1 Use the Windows Start > Run function to run the setup program with some
commandline switches that specify silent install mode. Click on Start > Run and
then click the Browse button which opens a standard file selection dialog. Navigate

Deploying your Application
Deploying Pocket PC applications

251

to the Redistribution Kit directory on your installation media (eg. CD or network
folder), click on Setup.exe, then click on Open. That will return you to the Run
dialog with the full path to the Setup.exe file shown in quotes.

2 Move the cursor to the end of that line without overwriting the path to Setup.exe,
and add the commandline switches /S /v/qn to specify the silent mode, leaving a
single space after the end quote, before the switches. You must enter these
commandline switches exactly as shown: the quoting and spacing matters.

An example commandline shown in the Run dialog, assuming a CD install media
using drive letter X: would be:

“X:\Redistribution Kit\Setup.exe” /S /v/qn

3 Click on OK. The Run dialog will close, and the installer program will silently
install and register the Satellite Forms redistributable components on the end user’s
PC without any prompting or interface.

4 Next, install the Satellite Forms ActiveSync Control silently using the same Start >
Run technique. Select SFrmAxPPC_Install.exe from the file browse dialog, and
add the commandline switch /VERYSILENT to the end, again outside of the end
quote. An example commandline shown in the Run dialog, assuming a CD install
media using drive letter X: would be:

“X:\Redistribution Kit\SFrmAxPPC_Install.exe” /VERYSILENT

5 Repeat steps 1-4 on each user computer.

Your end user’s computers now have the necessary components to communicate
with your application.

Tip This silent install procedure could easily be accomplished using a batch file
instead of using the Start > Run dialog. You could create a RDKSilentInstall.bat batch
file, located in the \Redistribution Kit folder, with these commands:

@REM Install the RDK components silently

Setup.exe /S /v/qn

@REM Install the ActiveSync Control silently

SFrmAxPPC_Install.exe /VERYSILENT

You would navigate to the \Redistribution Kit folder and double click on the
RDKSilentInstall.bat file to run it, performing the install silently.

Installing your application on the device
This is the final step in deployment of your application. In this step, you will be
installing your application on your user’s handheld devices.

Procedure Installing your application on a Pocket PC device

1 With the handheld device in the cradle, double-click the Install.bat file from your
installation media.

2 Follow the installer directions to complete installation.

3 After installation is complete, verify that your application appears on the handheld
device.

Satellite Forms 8
Development Guide

252

Installation of your application is complete. Your user can begin using the
application.

Working with the Pocket PC install utility
The Pocket PC install utility is a file-driven generic installer application that is
provided to help simplify installing the Satellite Forms engine and application
components on your end user’s computer. The install utility, CeRdkInst.exe, is
located in the following directory:

\Redist\PocketPC\

Generally, you will call the install utility from your own installation program to take
care of the details of installing the Satellite Forms engine and your application to a
handheld device.

Install utility command line switches
The install utility is controlled through command line switches and a configuration
file. Command line switches are used to request a particular task . For some switches,
the configuration file supplies additional data on the task to perform. A usage example
and list of command line switches is given below:

Usage: CERDKINST configuration-file [command-line_switches]

• instfiles: Install files listed in the configuration file to the device. (See below for
the format of the configuration file.)

• ? or –help: Display help information.

Some typical switch combinations used with the install utility are shown below:
CERDKINST install.ini -instfiles

This combination of switches will install the any number of files, such as the Satellite
Forms engine and your application, on an end user’s handheld device. This set of
switches is useful when you are going to install your application on many handheld
devices. Simply place each target handheld device in the cradle and run the install
utility with the above switches.

Working with the install utility configuration file
The install utility configuration file guides many of the tasks performed by the install
utility. The configuration file is a text file that uses the Windows .INI file format; it
can be created with any text editor. Command line switches passed to the install utility
control which of the sections of the configuration file will be used.

Many configuration files are very simple. A sample configuration file and an
explanation of elements in the file is given below.

Example 10.6 Sample Pocket PC configuration file
;
;Installer Section
[Installer]
EngWinTitle = Sample Installer

Deploying your Application
Working with the Pocket PC install utility

253

;
;FilesX Section
[Files0]
DevDir = Filter Test
File0 = D:\Apps\Test\FilterTest.EXE
File1 = D:\Apps\Test\FilterTest.PDA
File2 = D:\Apps\Test\ESMSF0000_TABLE1.PDB
;

Typically, an INI file is divided into sections. Each section starts with a word in
brackets and the section continues to the beginning of the next section or the end of
the file. Within each section are keys and values in the form key = value. Lines
beginning with a semicolon (;) are comments and are ignored. The sections in the
sample file are described below:

• [Installer]
EngWinTitle = Sample Installer

The [Installer] section controls various settings that specify the dialog boxes the
installer will display to the end user.

The EngWinTitle key controls what the install utility shows to the user when it is
being used to install files. As seen above, the EngWinTitle specifies the title
(“Sample Installer”) the installer window will have.

EngInstruct = Special instructions can go here

The EngInstruct key controls what optional text the install utility shows to the user
when it is being used to install files. As seen above, the EngInstruct specifies the
text (“Special instructions can go here”) instead of using the default text, which
informs the user to click on the Install button to install the files, or the Cancel
button to abort the installation.

The list of files that should be installed is specified in the next section, [FilesX].

• [FilesX]

[Files0]
DevDir = Filter Test
File0 = D:\Apps\Test\FilterTest.EXE
File1 = D:\Apps\Test\FilterTest.PDA
File2 = D:\Apps\Test\ESMSF0000_TABLE1.PDB

The [FilesX] section controls which device files will be installed when you use the
–instfiles switch. Files are grouped together by section names identified with
consecutive numbers starting from zero (the X in [FilesX]). Each group of files can
be installed to a different directory on a handheld device. An explanation of each
key in the [FilesX] section is given below:

• DevDir: This key controls which directory the files listed in the file group will
be installed to on the handheld device. The DevDir value has different
meanings based on the existence and location of the backslash character (‘\’)
than the OS of the handheld device uses to delimit the directory levels.

A backslash as the first character of the value specifies a directory starting at the
root of the handheld device. If the value does not start with a backslash then the
directory is a subdirectory of the My Documents directory. The directory value

Satellite Forms 8
Development Guide

254

can contain zero or more backslash characters to represent multiple levels of
directories. If the directory does not exist on the handheld device, the install
utility will attempt to create the directories as needed.

Creating a custom installer for Palm or Pocket PC applications
You may want to create an installer for your application instead of using the generic
version that ships with Satellite Forms. This section contains guidelines for creating a
custom installer to distribute the necessary components of your application.

File placement and registration
Your custom installer must distribute files from the RDK to specific locations on your
end user’s computers. It is recommended that your installer places the files in the
order given below.

Caution Each RDK file you distribute must be marked “shared”. This is necessary
because other Satellite Forms applications may utilize the same files. If a file is not
marked “shared”, important files can be removed when an application is uninstalled.

Procedure Adding required functionality to your custom installer

Palm OS only 1 This step is required for Palm OS device applications. Continue to step 2 if your
application is for Pocket PC devices.

Your installer must install and register the following files in the System folder on
the target computer:

• All DLL files in \Redist\Palm\WinSys.

• The file SFrmAx80.ocx from \Redist\Palm\CommonFilesFolder. This file
must be registered.

• The file InkVwAx.ocx from \Redist\Palm\CommonFilesFolder. This file is
optional; it is required only when Ink controls are used in an application. If you
are using Ink controls, you must include and register this file.

Note Installing the optional InkVwAx.ocx file is recommended to ensure
compatibility with possible future applications.

Tip A registration utility, named regsvr32.exe and located in \Redist\Palm, is
included to simplify registering these files.

2 Install and register files in the Common Files folder on the target computer, where
Common Files represents the directory typically located at C:\Program
Files\Common Files, using the following guidelines:

a Create a directory named Satellite Forms X.X\Bin in the Common Files folder.

b In the Satellite Forms X.X\Bin directory you created, add the SDDI and
SFDDB directories and their contents from the \Redist\Palm directory, making
sure to mark all DLL files in these directories as shared.

c Add three registry keys as follows:

• Path: Path is a string value which must display the proper path to the
Common Files directory that contains the Satellite Forms X.X\Bin

Deploying your Application
Creating a custom installer for Palm or Pocket PC applications

255

directory. The Path registry key is located in
HKEY_LOCAL_MACHINE\SOFTWARE\Thacker\Satellite Forms
X.X\X.X, where X.X represents your Satellite Forms version. An example
path registry value would be:

C:\Program Files\Common Files\Satellite Forms 8\

• Version: Version is a DWORD value that contains the current version
number. The Version registry key is located in
HKEY_LOCAL_MACHINE\SOFTWARE\Thacker\Satellite Forms
X.X\CurrentVersion, where X.X represents your version of Satellite
Forms.The current value should be, in hexadecimal, 0x00000800.

• Keyname: Keyname is a string value which must contain the current
SatForms version number in string format. The Keyname registry key is
located in HKEY_LOCAL_MACHINE\SOFTWARE\Thacker\Satellite
Forms X.X\CurrentVersion, where X.X represents your version of Satellite
Forms.The current value should be, in string format, 8.0.

Tip Steps 1 and 2 above can be completed automatically with the merge module
included in the RDK that uses the Microsoft Windows Installer. The merge module,
named SatFormsRedist.msm, is located at \Redist\Palm\Merge Modules. It contains
all the files and setup information mentioned above. Include this module in your
Windows Installer project for Palm OS and Pocket PC applications. Confirm that
steps 1 and 2 above have been completed after your installer is run to ensure the merge
module was utilized correctly.

Palm OS only 3 This step is required for Palm OS device applications. Continue to step 4 if your
application is for Pocket PC devices.

For Palm OS applications, a third registry key is needed for conduit information.
This will contain all the information the HotSync application will need to
synchronize with your application's files.

You will need to specify the following:

• Name of the current Satellite Forms conduit. This conduit is located in
\Redist\Palm\WinSys. The name should be similiar to the following:

SFrmCnXX.DLL

where XX represents your Satellite Forms major version number (eg. 80).

• The unique Creator ID of your application.

Tip The easiest way to install the conduit properly is include the generic install utility
within your custom installer program using the command line options. See
theWorking with the Palm OS install utility or Working with the Pocket PC install
utility sections in this chapter for more information on the generic install utilities.

Caution If you choose to utilize the generic install utility within your custom installer,
your installer must complete the DLL installation and registry steps above before
starting the generic installer. Be sure to place the generic installer at the end of your
custom install process.

4 After you have completed your custom installer, continue with the deployment
process in the Deploying Palm OS applications and Deploying Pocket PC
applications sections in this chapter.

Satellite Forms 8
Development Guide

256

Satellite Forms Scripting Language Reference
Overview of the Satellite Forms scripting language

257

Chapter 11
Satellite Forms Scripting Language
Reference

This chapter describes the Satellite Forms object model, provides an example of
creating a Satellite Forms script, and provides a complete reference to the scripting
language.

Overview of the Satellite Forms scripting language
The Satellite Forms scripting language, which is based on Visual Basic syntax, allows
you to enhance the functionality of your applications. Scripting complements the
built-in Satellite Forms features with local and global variables, mathematical
operations, conditional logic, loops, and user-interface functions.

Satellite Forms is based on an object model that provides event-driven scripting.
Satellite Forms’ objects include the application, forms, controls, tables, fields, and
extensions. Objects have properties, methods, and generate events. When an object
generates an event, the script associated with that event is executed. Your scripts can
take advantage of various object methods and properties as well as many language
keyword operators, enabling you to create very versatile applications.

Satellite Forms 8
Development Guide

258

The Satellite Forms object model
The Satellite Forms object model, which is the hierarchy of Satellite Forms objects, is shown
in the following figure:

Figure 11.1 Satellite Forms object model

Object properties, methods, and events
Objects have properties, methods, and generate events. The following sections are
organized by object, listing and describing the properties, methods, and events for
each object. See Satellite Forms scripting language reference on page 314 for detailed
syntax and usage information for all properties and methods.

Satellite Forms Scripting Language Reference
The Satellite Forms object model

259

App object properties, methods, and events
The App object is the current Satellite Forms application.

Table 11.1 App object property

Property Description

None

Table 11.2 App object methods

Method Description

Beep Issues a beep from the handheld device speaker.

DateToSysDate Converts a user-readable date to days since 1904.

Delay Waits a specified number of milliseconds.

FormatNumber Formats a number to a specified number of decimal places.

Function User defined global function that can take optional parameters,
perform your user-defined statements, and return a result.

GetAppCreator Returns a string containing the application’s 4-character creatorID.

GetAppName Returns a string containing the name of the application as defined in
the project properties.

GetAppPath Returns a string containing the folder path in which the application
resides on the PocketPC device.

GetAppVersion Returns a string containing the application major and minor version
numbers as defined in the project properties.

GetEngineVersion Returns the version number of the runtime engine as a string.

GetLastKey Returns the last key that pressed.

GetPenStatus Returns whether or not the pen is touching the screen and if so, the
pen’s x, y coordinates.

GetSysDate Returns the current sync state of the specified sync step in a server
application.

GetSysDate Returns days since January 1, 1904.

GetSysTime Returns seconds since 12 a.m., January 1, 1904.

GetTickCount Returns the number of timer ticks since the handheld device was
turned on.

GetTickFrequency Returns the frequency of the timer ticks.

GetUserID Returns the Satellite Forms-assigned unique user ID of the handheld
device.

GetUserName Returns the Satellite Forms-assigned unique user name of the
handheld device.

KillTimer Turns off the timer.

MsgBox Displays a dialog box with an OK button.

Prompt Displays a dialog box with OK and Cancel buttons.

Satellite Forms 8
Development Guide

260

PromptCustom Displays a dialog box with customizable title and buttons.

Quit Quit the application and return to the app launcher.

RemoveAllFilters Removes (clears) all active table filters to make all records visible.

SetDelayToChangeEvent Sets the delay between when a Graffiti stroke is entered and the
firing of the AfterChange event.

SetTimer Turns on the timer.

Sub User defined global function that can take optional parameters and
perform your user-defined statements. It does not returns a result.

SysDateToDate Converts days since January 1, 1904 to a user-readable date.

SysTimeToTime Converts seconds since midnight to a user-readable time.

TimeToSysTime Converts user-readable time to seconds since midnight.

Tone Plays a tone of specified frequency, duration, and amplitude.

Table 11.3 App object events

Event Description

AfterAppStart Event occurs when the application starts, prior to displaying the first
form.

BeforeAppEnd Event occurs immediately prior to the application closing.

Table 11.2 App object methods (Continued)

Satellite Forms Scripting Language Reference
The Satellite Forms object model

261

Control object properties, methods, and events

A Control object is a Satellite Forms user-interface control in the current application.

Table 11.4 Control object properties

Property Description

Caption Label associated with a control.

Data (default) Data displayed in the control.

Font Font used by the control.

Index Read-only. Index of the control used by Satellite Forms extensions.

ReadOnly Read-only attribute of the control.

Underline Underline attribute of the control.

Visible Makes the control is visible or invisible.

Table 11.5 Control object methods

Method Description

ExecAction Executes the action associated with the control.

GetPosition Retrieves the location and size of the control on the form.

GetSelection Retrieves the start and end offsets of the highlighted text in the control.
Available only for Paragraph and Edit controls.

Popup Pops up a droplist list, or an autokeyboard for edit & paragraph controls.

SetFocus Puts cursor in the control.

SetPosition Modifies the position and size of the control on the form.

SetSelection Highlights text in the control. Available only for Paragraph and Edit
controls.

Scroll Scrolls the control up or down. Available only for the Paragraph control.

Table 11.6 Control object events

Event Description

OnClick Occurs when the user taps a control.

Satellite Forms 8
Development Guide

262

Controls collection properties, methods, and events

A controls collection is the collection of Satellite Forms user-interface controls on a
specific form of the current application.

Extension object properties, methods, and events
An extension object is a Satellite Forms SFX plug-in or SFX Custom control in the
current application.

Table 11.7 Control collection properties

Properties Description

Count The number of controls in the form.

Table 11.8 Control collection methods

Method Description

None

Table 11.9 Control collection events

Event Description

None

Table 11.10 Extension object properties

Property Description

Index (default) Index of the extension.

Table 11.11 Extension object methods

Method Description

User-defined See the Help information for the specific extension.

Table 11.12 Extension object events

Event Description

OnClick May occur when the user taps a Satellite Forms SFX control. See the
Help information for the specific extension for more information.

Satellite Forms Scripting Language Reference
The Satellite Forms object model

263

Extensions collection properties, methods, and events

An Extensions collection is the collection of extensions in a specific application.

Field object properties, methods, and events

A Field object is a cell in a specific table in an application. Field objects have the same
name as their corresponding columns and always have the context of the current
record.

Table 11.13 Extensions collection properties

Properties Description

Count The number of extensions in the application.

Table 11.14 Extensions collection methods

Method Description

None

Table 11.15 Extensions collection events

Event Description

None

Table 11.16 Field object properties

Properties Description

Data (default) Data contained in the field.

Index Read-only. Index of the field. Used by Satellite Forms extensions.

Table 11.17 Field object method

Method Description

None

Table 11.18 Field object events

Event Description

None

Satellite Forms 8
Development Guide

264

Fields collection properties, methods, and events

A Field collection is the collection of fields in a specific table.

Form object properties, methods, and events

A Form object is a Satellite Forms form in a specific application.

Table 11.19 Field collection properties

Properties Description

Count The number of columns in the table.

Table 11.20 Field collection method

Method Description

None

Table 11.21 Field collection events

Event Description

None

Table 11.22 Form object properties

Properties Description

CanClose CanClose property of the form. Pocket PC platform only.

CurrentPage Zero-based page number of the current page.

CurrentRecord Zero-based record number of the current record.

Index (default) Read-only. The index of the form. Used by Satellite Forms extensions.

Table 11.23 Form object methods

Method Description

GetFocus Returns the index of the control that has the focus using %Fnnn.Cnnn
format or “” if no control has focus. The F in this format represents form,
the C represents control, and the nnn represents the index.

MoveFirst Moves to the first record in the form’s linked table.

MoveLast Moves to the last record in the form’s linked table.

MoveNext Moves to the next record in the form’s linked table.

MoveNextPage Moves to the next page of a form.

Satellite Forms Scripting Language Reference
The Satellite Forms object model

265

Forms collection properties, methods, and events

The Forms Collection object is the collection of forms in a specific application.

MovePrevious Moves to the previous record in the form’s linked table.

MovePreviousPage Moves to the previous page of a form.

PreviousForm Returns to the previous form.

Refresh Saves the contents of the form’s controls to the underlying table and
then calls Requery to reload the data and redraw the screen.

Repaint Redraws the form and the controls on the screen.

Requery Reloads controls on the form from the underlying table and then calls
Repaint.

Show Displays the specified form (jumps to the form).

Table 11.23 Form object methods (Continued)

Table 11.24 Form object events

Event Description

AfterChange Occurs after data in any field in the form’s linked table is changed.

AfterLoad Occurs after the controls on a form are loaded with data from the form’s
linked table.

AfterOpen Occurs after a form is opened.

AfterRecordCreate Occurs after a new record is created in a form’s linked table.

BeforeClose Occurs immediately before a form is closed.

BeforeRecordDelete Occurs immediately before a record is deleted from a form’s linked table.

OnClick Occurs when the user taps a control.

OnKey Occurs when user presses one of the keys or silk-screened buttons, or
enters a Graffiti stroke.

OnPenDown Occurs when the stylus touches the screen.

OnPenUp Occurs when the stylus is lifted from the screen.

OnTimer Occurs every period of the timer.

OnValidate Occurs when a form is validated.

Table 11.25 Form collection properties

Properties Description

Count The number of forms in the application.

Satellite Forms 8
Development Guide

266

Table object properties, methods, and events
A Table object is a Satellite Forms table in an application.

Table 11.26 From collection methods

Method Description

None

Table 11.27 Form collection events

Event Description

None

Table 11.28 Table object properties

Property Description

Index (default) Read-only. Index of the table. Used by Satellite Forms extensions.

Count Read-only. Number of records in the table.

Position Row number of the current record in the table.

RecordValid Indicates whether Position specifies a valid record.

Table 11.29 Table object methods

Method Description

AddFilter Adds a filter to a table.

Backup Backs up a table to a specified folder. New in Satellite Forms 8.

BinarySearch Finds an item in a sorted table.

CommitData Commits (saves) the cached table to storage immediately.

CreateRecord Creates a record in the table.

DeleteRecord Deletes a record from the table.

InsertionSort Sorts the records in the table using the specified column as the key.

Lookup Finds an item in a table and returns the contents of another column in
that matching record. New in Satellite Forms 8.

Max Returns the maximum value of any record in a specified column of the
table.

Min Returns the minimum value of any record in a specified column of a
table.

Satellite Forms Scripting Language Reference
The Satellite Forms object model

267

MoveCurrent Moves to the table’s current record. Does not change data displayed on
the form.

MoveFirst Moves to the table’s first record. Does not change data displayed on the
form.

MoveLast Moves to the table’s last record. Does not change data displayed on the
form.

MoveNext Moves to the table’s next record. Does not change data displayed on
the form.

MovePrevious Moves to the table’s previous record. Does not change data displayed
on the form.

MoveRecord Moves a record from location in the table and to another location.

QuickSort Sorts records in the table using a specified column as the sort key.

RemoveFilter Clears (removes) a filter from a table.

RemoveRecord Immediately removes a record from the table. Differs from
DeleteRecord which deletes records at the next HotSync.

Search Finds an item in a table. New in Satellite Forms 8.

Sum Sums the data in a specified column of the table.

Table 11.29 Table object methods (Continued)

Method Description

Table 11.30 Table object events

Event Description

None

Satellite Forms 8
Development Guide

268

Tables collection properties, methods, and events

The Tables Collection object is the collection of tables in an application.

SFX plug-in and control properties and methods
SFX plug-ins and controls have properties and methods you can use. This section
provides an overview of the properties and methods for many of the SFX plug-ins and
controls supplied with Satellite Forms.

Note Not all of the SFX plug-ins and controls included with Satellite Forms are listed
here in this documentation. You are encouraged to explore the sample projects
included with Satellite Forms to learn about other extensions that are not listed here.

You can learn more about these and other commercially available extensions in the
Satellite Forms Solutions Guide, and also by browsing the sample projects included
with Satellite Forms.

Note Some SFX plug-ins and controls are available for Pocket PC devices, some are
available for the PalmOS platform only, and some are available for both platforms.

SFX plug-in and control extensions included with Satellite Forms

Table 11.31 Table collection properties

Property Description

Count The number of tables in the application.

Table 11.32 Table collection methods

Method Description

None

Table 11.33 Table collection events

Event Description

None

Table 11.34 SFX plug-in and control extensions included with Satellite Forms

Extension Description

Aceeca IDVERIFI Bar Code
extension

Controls the barcode scanner on Aceeca Meazura ruggedized
Palm OS scanners.

Battery Info extension Gets battery & power status, now replaced by SysUtils
extension.

Color Graphics extension Simple color graphic functions like drawing boxes and circles.

Colorizer extension Customize your app appearance with color forms and controls.

Satellite Forms Scripting Language Reference
The Satellite Forms object model

269

Color Slider control Provides a color slider control for user input and progress
feedback.

ConnectionMgr extension Connect to or disconnect from the Internet on Pocket PC PDAs.

DynamicInputArea control Custom control that enables you to support the expandable
screens that are available on some Palm OS devices.

EditEx extension Functions to manipulate Edit and Paragraph controls.

FindFiles extension Functions to find and list information about files and folders.

FormNavHelper extension Handles the Treo-style focus ring form navigation system on
newer Palm handhelds.

GoogleMaps extension Access Google Maps for Palm OS from your SatForms
application.

GPS extension Easy access to GPS data on Windows Mobile 5 and higher
devices.

HyperLink control Add colored, underlined text links that respond to pen taps.

InkHelper extension Utility and conversion functions for Satellite Forms Ink fields.

IntermecScan control Controls the barcode scanner on Intermec Pocket PC scanners.

IntermecScan control Controls the barcode scanner on Honeywell Pocket PC
scanners.

IntermecScan control Controls the barcode scanner on Datalogic Pocket PC
scanners.

JanamUtils extension Control hardware properties on Janam XP devices.

LaunchReturn extension Restart your application after the user runs another program.

LaunchURL extension Launch/view a specified website URL, local html documents
and image files in the web browser.

Math extension Advanced mathematical functions including trigonometry.

Memory extension Allocate, read, and write memory blocks in your application.

Printer extension Simple serial printing functions for Palm OS.

Puma Beam DB extension Adds infrared (IR) data file transmission capability.

Puma Data Manager extension Access to a selected set of Palm OS Data Manager APIs.

Puma Error Manager extension Palm OS error code handling.

Puma Resource Manager
extension

Access to Palm OS resources and their databases.

Px Screen Tool extension Functions to switch Palm OS display modes.

Random Number Generator
extension

Pseudo-random number generation capabilities.

ScreenSize extension Get current screen size and orientation on the PocketPC.

Serial Port extension Serial port send/receive capability for Palm OS and Pocket PC.

ShowImage control Display image files (JPG/GIF/PNG/BMP) on the form on Pocket
PC devices.

Table 11.34 SFX plug-in and control extensions included with Satellite Forms

Satellite Forms 8
Development Guide

270

A description of the methods and properties of many of the above listed extensions
appears below.

Aceeca IDVERIFI Bar Code extension
The Aceeca IDVERIFI Bar Code extension interfaces to an integrated bar code
scanner on Aceeca Meazura Palm OS devices. The Aceeca IDVERIFI Bar Code
extension is a plug-in and has no properties.

Platform(s): Palm OS only (Aceeca Meazura devices only)

Sample project(s): IDVERIFI Barcode

SocketScan control Controls a a Socket Mobile barcode reader card or Cordless
Hand Scanner.

Square Root extension Provides a square root function.

Strings extension Provides numerous handy string manipulation functions.

Symbol Integrated Scanner
control

Controls integrated bar code reader on many Symbol and
Janam Palm OS scanners, and Symbol Pocket PC handheld
scanners.

Symbol MSR control Controls a Symbol Palm OS magnetic stripe reader.

SysUtils extension Access to dozens of OS (operating system) utility functions

TCPIP Winsock/Internet
extension

Connect to TCP/IP based networks (such as the Internet) to
send/receive data over sockets.

UnitechScan control Controls integrated barcode scanner on Unitech Pocket PCs.

WM5Camera extension Control an integrated camera on Windows Mobile 5 and higher
devices to capture still photos and videos.

Table 11.34 SFX plug-in and control extensions included with Satellite Forms

Table 11.35 Aceeca IDVERIFI Bar Code extension methods

Method Description

About Displays information about the extension in a dialog box.

IDV_IsAceecaUnit Returns true or false if the current device is an Aceeca unit.

IDV_SetBCSType Sets the installed BCS module type for BCS1 or BCS2.

IDV_EnableScanner Turns on scanner power, enables UART. Returns true if scanner
enabled, false if not enabled.

IDV_DisableScanner Turns off power to scanner, disables UART. Returns true if scanner
disabled, false if not disabled.

IDV_Trigger Starts scanning if trigOn is true, else stops scanning.

IDV_ScanAvail Returns # bytes in scanner buffer.

IDV_GetScan Returns barcode string or times out.

IDV_ResetScanner Cycles power to scanner engine to force it to be reset.

IDV_SetToFactoryDefaults Sets scanner engine configuration to factory defaults.

IDV_ChangeSettings Sends configuration string to scanner.

Satellite Forms Scripting Language Reference
The Satellite Forms object model

271

Battery Info extension
The Battery Info extension allows you to obtain battery charge level and AC power
status in your Satellite Forms application. The Battery Info extension is a plug-in and
has no properties.

Platform(s): Palm OS and Pocket PC

Sample project(s): Battery Info

Note These battery functions are also available in the SysUtils extension which has
numerous other useful methods. Use the SysUtils extension instead.

Color Graphics extension
The Color Graphics extension provides color graphic capabilities to your Satellite
Forms applications. The Color Graphics extension is a plug-in and has no properties.

Platform(s): Palm OS and Pocket PC

Sample project(s): Color Graphics, Color Table

IDV_GetLibVersion Returns the scanner library version number.

IDV_SetScanTrigger Specifies a keycode that will trigger a scan, intended to let you
program hard buttons to trigger a scan.

IDV_GetScanTrigger Returns a specified scan trigger keycode.

Table 11.35 Aceeca IDVERIFI Bar Code extension methods (Continued)

Table 11.36 Battery Info extension methods

Method Description

About Displays information about the extension in a dialog box.

BI_GetBatteryPercent Returns the current battery charge level as a percent.

BI_GetPluggedIn Returns whether the PDA is plugged in to power or not.

Table 11.37 Color Graphics extension methods

Method Description

About Displays information about the extension in a dialog box.

CalcTextWidth Determine the width in pixels a given string requires, using the
current font.

DrawBar Draws a filled bar, as for a bar graph, using the current Pen and Fill
colors.

DrawCircle Draws a circle using the current Pen and Fill colors.

DrawLine Draws a line using the current Pen color.

DrawRect Draws a rectangle using the current Pen and Fill colors.

DrawRoundedRect Draws a rounded rectangle with the specified corner radius using
the current Pen and Fill colors.

DrawText Draws text at the specified point using the current text color.

Satellite Forms 8
Development Guide

272

Colorizer extension
The Colorizer extension is a plugin extension for Palm OS and Pocket PC that enables
you to customize the look of your application with color forms and controls.

See the discussion Using color in your application on page 190 for a more in-depth
explanation of how to use the Colorize methods to customize your application
appearance.

EraseBar Erases a filled bar drawn using the DrawBar method.

EraseCircle Erases a circle drawn using the DrawCircle method.

EraseLine Erases a line drawn using the DrawLine method.

EraseRect Erases a rectangle drawn using the DrawRect method.

EraseText Erases text drawn using the DrawText method.

GetColor Returns the colors currently in use.

GetCurrentRGBColors Returns a text string containing the current red, green, and blue
colors.

GetFillColor Returns the Fill color.

GetPenColor Returns the Pen color.

InvertText Inverts the text at the specified point.

Is16BitCapable Determines whether the handheld device is capable of displaying
16-bit color.

Is35 Determines whether the handheld device has Palm OS 3.5 or
greater.

RestorePrevColor Restores the previous color scheme.

SetBackColor Sets the background color to one of the 256 colors in the color
table.

SetBackColor16 Sets the 16-bit background color based on the specified RGB
values.

SetFillColor Sets the Fill color to one of the 256 colors in the color table.

SetFont Sets font style for the DrawText method.

SetForeColor Sets the foreground color to one of the 256 colors in the color table.

SetForeColor16 Sets the 16-bit foreground color based on the specified RGB
values.

SetPaintKeyCode Specifies a virtual keycode to be sent to your app by the extension
as a signal to redraw your graphics. Trap this keycode in the
OnKey event. Pocket PC only.

SetPattern Sets the 8 x 8 custom Fill pattern.

SetPenColor Set the Pen color.

SetTextColor Sets the text color to one of the 256 colors in the color table.

SetTextColor16 Sets the 16-bit text color based on the specified RGB values.

Table 11.37 Color Graphics extension methods (Continued)

Satellite Forms Scripting Language Reference
The Satellite Forms object model

273

Platform(s): Palm OS and Pocket PC.

Sample project(s): Colorizer

The Colorizer sample project also demonstrates the use of a splash screen bitmap, as
well as the integrated runtime engine. If you installed Satellite Forms in the default
location, this sample is located at C:\Satellite Forms
8\Samples\Projects\Colorizer\Colorizer.sfa and can also be reached from the
Windows Start menu > Programs > Satellite Forms 8 > Samples > Projects >
Colorizer. The Colorizer sample project has also been precompiled into a
Redistribution sample that is ready to install onto a Palm OS or Windows Mobile
handheld, via the Windows Start menu > Programs > Satellite Forms 8 > Samples >
Redist > Colorizer.

Color Slider control
The Color Slider control provides a Slider control that uses color graphics for use in
your Satellite Forms applications.

Platform(s): Palm OS and Pocket PC

Sample project(s): Color SFX Controls

Table 11.38 Colorizer extension methods

Method Description

About Displays information about the extension in a dialog box.

Colorize (PocketPC only) Set True to use color controls with the colors you
have defined, or False to use standard system colors.

ColorizeButton Set Button controls foreground and background colors.

ColorizeCheckbox Set Checkbox controls foreground and background colors.

ColorizeDroplist Set Droplist controls foreground and background colors.

ColorizeEdit Set Edit controls foreground and background colors.

ColorizeExtra (PalmOS only) Set extra Palm UI colors that are not handled in any
other Colorizer functions.

ColorizeForm Set Forms background color as hexadecimal RGB value.

ColorizeInk Set Ink controls foreground and background colors.

ColorizeListbox Set Listbox controls foreground and background colors.

ColorizeLookup Set Lookup controls foreground and background colors.

ColorizeParagraph Set Paragraph controls foreground and background colors.

ColorizeRadio Set Radio controls foreground and background colors.

ColorizeText Set Text controls foreground and background colors.

Table 11.39 Color Slider control properties

Property Description

BACKCOLOR Specifies the background color.

Satellite Forms 8
Development Guide

274

BEEP Specifies whether the control should beep when the user interacts with it.
If set 0, no beep occurs. If set to 1, a beep sounds when the user first
touches the control. The default setting is 0.

DSOURCE Fields("col_name") specifies that "col_name" (double-quotes required) in
the form’s linked table that contains the control will be used to load and
store the value of the control. The default value is “none”.

FASTTRACK Specifies how often the OnClick event fires:

• 0 = Every time the pen moves

• 1 = After the pen is lifted
The default setting is 0.

FORECOLOR Specifies the foreground color.

INITVAL Specifies that the initial position of the control's bar should be at a number
between MIN and MAX. The default setting is 0.

MIN Specifies the minimum position of the control. The default setting is 0.

MAX Specifies the maximum position of the control. The default setting is 100.

PATTERNTYPE Specifies the style of the bar pattern:

• 0 = Transparent

• 1 = Alternating dots

• 2 = Diagonal lines

• 3 = Vertical lines

• 4 = Black

STYLE Specifies the style of slider control:

• 0 = Progress Bar: no user interaction)

• 1 = Slider with marker: user can slide the marker

• 2 = Slider with no marker: user taps the bar to indicate the desired
position

• 3 = 3D Slider: color handhelds only
 The default setting is 1.

VISIBLE Specifies whether the control is visible. The default value is TRUE.

Table 11.40 Color Slider control methods

Method Description

About Displays information about the control in a dialog box.

FastTrack Specifies how often the OnClick event fires.

GetCurrentColor Returns the specified color, either the foreground color or the background
color depending on the parameter value.

SldGetPosition Returns the current position of the control.

IsHandheld35 Determines whether the handheld device has Palm OS 3.5 or greater.

RestorePrevColor Restores the previous color scheme.

SetBackColor Sets the background color.

Table 11.39 Color Slider control properties (Continued)

Satellite Forms Scripting Language Reference
The Satellite Forms object model

275

ConnectionMgr extension
The ConnectionMgr extension is a plugin extension for Pocket PC that enables your
application to initiate a dialup connection to the Internet. This is useful for TCPIP
Winsock functions, HTTP, FTP, etc. on dialup TCPIP connections (eg. modem,
EDGE/GPRS, 1xRTT/EVDO, HSDPA, etc.). A disconnect function is also provided.

Platform(s): Pocket PC only. Windows CE devices do not have the ConnectionMgr
API libraries, so use CM_HasConnectionMgr first before calling other functions.

Sample project(s): ConnectionMgr

DatalogicScan control
The DatalogicScan control interfaces to an integrated bar code scanner on many
Datalogic Windows Mobile devices.

Platform(s): Windows Mobile (Datalogic devices only)

Note There are actually two different versions of the SFE_DatalogicScan.sfx
extension file provided, and the correct SFX file to use on your handheld device
depends on which specific Datalogic scanner model you are using. See the extension
help for the DatalogicScan control for the complete explanation. The methods and
properties are the same for both versions of the extension.

SetForeColor Sets the foreground color.

SldSetMinMax Sets the minimum and maximum values.

SldSetPosition Sets the position of the control.

SetVisible Makes the control visible or invisible.

Table 11.40 Color Slider control methods (Continued)

Table 11.41 ConnectionMgr extension methods

Method Description

About Displays information about the extension in a dialog box.

CM_Connect Connect to the internet, using the specified URL to determine the
best connection method.

CM_ConnectByIndex Connect using the specified connection instead of default.

CM_Disconnect Request the current connection to be disconnected.

CM_GetConnectionName Generate a list of available connection names.

CM_HasConnectionMgr Determines if device has the ConnectionMgr API library or not.

Satellite Forms 8
Development Guide

276

Sample project(s): DatalogicScan

DynamicInputArea control
The DynamicInputArea (DIA) extension is a custom control that enables you to
support the expandable screens that are available on some Palm OS devices (such as
the Palm Tungsten T3, T5, TX, and LifeDrive). A KnowledgeBase article titled “How
To support Expandable Screens in PalmOS applications” discusses how to use this
DynamicInputArea control in your applications.

Platform(s): Palm OS only

Table 11.42 DatalogicScan control properties

Property Description

AFTERSCAN Specifies a button control to execute immediately after performing the
barcode scan, instead of executing the OnClick action of the
DatalogicScan control.

Table 11.43 DatalogicScan control methods

Method Description

About Displays information about the control in a dialog box.

AddStripChar Add a char (by ASCII value) to the list of chars that should be stripped
from the scanner data output (useful for stripping off CRLF or other).

ClearStripChars Clear the list of chars that should be stripped from the scanner data
output, so no chars are stripped.

DoScan Triggers a scan as if the hardware scan button was pressed.

GetScanData Returns the scanned data from the last scan operation.

GetScanDataLen Returns the length in bytes of the scanned data from the last scan
operation.

GetScanOkay Returns true or false to indicate if the last scan operation was successful.

GetScanType Returns the symbol code from the last scan operation.

IsDatalogicScanner Returns whether current device is an Datalogic scanner.

IsScannerEnabled Returns whether the scanner is enabled (true) or disabled (false).

IsWedgeEnabled Returns whether the scanner wedge utility is enabled (true) or disabled
(false).

ScannerDisable Disables the scanner.

ScannerEnable Enables the scanner.

SetAfterScan Specifies a button control or the DatalogicScan control's OnClick event to
execute immediately after the scan event is fired.

SetWedgeEnabled Sets whether the scanner wedge utility is enabled (true) or disabled
(false).

Satellite Forms Scripting Language Reference
The Satellite Forms object model

277

Sample project(s): Dynamic Input Area

EditEx extension
The EditEx extension allows you to manipulate Edit and Paragraph controls in
Satellite Forms applications. The EditEx extension is a plug-in and has no properties.

Platform(s): Palm OS and Pocket PC

Table 11.44 DynamicInputArea control properties

Property Description

DIAPOLICY How the dynamic input area should be handled on the current form.

DIASTATE The current setting of the DIA (maximized or minimized).

DIATRIGGERSTATE The current setting of the input trigger (enabled or disabled).

ORIENTATION The current screen orientation (landscape or portrait).

ORIENTATIONTRIG
GERSTATE

The current status of the orientation trigger (enabled or disabled).

Table 11.45 DynamicInputArea extension methods

Method Description

About Displays information about the extension in a dialog box.

DIA_DeviceHasDIA Returns whether the current device has a DIA.

DIA_GetCurrentPinlet Returns current pinlet (DIA input keyboard).

DIA_GetCurrentPinletMode Returns current pinlet (DIA input keyboard) mode.

DIA_GetDIAState Returns current DIA state.

DIA_GetDisplayHeight Returns current display height in pixels.

DIA_GetDisplayWidth Returns current display width in pixels.

DIA_GetFormDIAPolicy Returns current form DIA policy.

DIA_GetOrientation Returns current display orientation.

DIA_GetOriTriggerState Returns current orientation trigger state.

DIA_GetTriggerState Returns current DIA trigger state.

DIA_SetCurrentPinlet Sets active pinlet (DIA input keyboard).

DIA_SetCurrentPinletMode Sets current pinlet (DIA input keyboard) mode.

DIA_SetDIAState Set current DIA state.

DIA_SetFormDIAPolicy Sets current form DIA policy.

DIA_SetOrientation Sets current display orientation.

DIA_SetOriTriggerState Sets current orientation trigger state.

DIA_SetTriggerState Sets current DIA trigger state.

Satellite Forms 8
Development Guide

278

Sample project(s): Find Replace

FindFiles extension
The FindFiles extension provides functions to search for files and folders, and get
information about them such as file sizes and dates. This extension makes it easy to
generate a list of PDB files in the app's folder, or a list of documents in the My
Documents folder, etc.. The FindFiles extension is a plug-in and has no properties.
New in Satellite Forms 8.

Platform(s): Palm OS and Pocket PC

Sample project(s): FindFiles

Table 11.46 EditEx extension methods

Method Description

EditExAbout Displays information about the extension in a dialog box.

EditExAppendText Appends text to the specified control's text.

EditExBackspace Backspaces one character in the specified control.

EditExDeleteText Deletes the specified text from the specified control.

EditExGetInsertion Returns the current insertion position in the specified control.

EditExGetSelectionEnd Returns the end position of the text selection in the specified
control.

EditExGetSelectionStart Returns the start position of the text selection in the specified
control.

EditExInsertText Inserts the specified text at the current insertion position in the
specified control.

EditExInStr Returns the position of the first occurrence of one string within
another.

EditExSetInsertion Sets the insertion position in the specified control.

EditExSetSelection Sets the text selection in the specified control.

Table 11.47 FindFiles extension methods

Method Description

FF_DeviceHasVFS [PalmOS only.] Report whether the device has VFS memory card
support.

FF_FindClose Close an open Find operation when done with it.

FF_FindFirstDir Find first dir in a new search. [For PalmOS this operates on a VFS
card volume.]

FF_FindFirstFile Find first file in a new search.

FF_FindFirstFileVFS [PalmOS only.] Find first file in a new search on VFS card.

FF_FindNextDir Find next dir in existing search. [For PalmOS this operates on a
VFS card volume.]

FF_FindNextFile Find next file in existing search.

Satellite Forms Scripting Language Reference
The Satellite Forms object model

279

FormNavHelper extension
The FormNavHelper extension provides functions for handling the Treo-style focus
ring form navigation system on newer Palm handhelds. The FormNavHelper
extension is a plug-in and has no properties.

Platform(s): Palm OS only

Sample project(s): Form Nav Helper

FF_FindNextFileVFS [PalmOS only.] Find next file in existing search on VFS card.

FF_GetFileAttr Get the file attributes of the current matching file.

FF_GetFileCreator [PalmOS only.] Get the creatorID of the current matching file.

FF_GetFileDateBackedUp Get the file backed up date of the current matching file.

FF_GetFileDateCreated Get the file creation date of the current matching file.

FF_GetFileDateModified Get the file modification date of the current matching file.

FF_GetFileName Get the name of the current matching file or directory.

FF_GetFileSize Get the file size of the current matching file.

FF_GetFileType [PalmOS only.] Get the file type of the current matching file.

FF_GetFileVersion [PalmOS only.] Get the file version of the current matching file.

FF_GetLastErr Report the last error code.

FF_GetNextVolRef [PalmOS only.] Get the first or next VFS volume reference, which
identifies a VFS volume for use in other functions.

FF_GetVFSLabel [PalmOS only.] Return the specified VFS volume label.

FF_GetVFSVolRef [PalmOS only.] Gets the currently active global VFS volume
reference.

FF_SetCaseSensitive [PalmOS only.] Set the filename matching case sensitivity true or
false for a new search.

FF_SetVFSVolRef [PalmOS only.] Sets the currently active global VFS volume
reference.

FF_ShowPrivateVolumes [PalmOS only.] Specify whether to make hidden internal private
volumes visible to the FF_GetNextVolRef function.

Table 11.47 FindFiles extension methods (Continued)

Table 11.48 FormNavHelper extension methods

Method Description

About Displays information about the extension in a dialog box.

GetNavControlFocus Gets the index of the control on the current form that has navigation
focus.

GetNavState Returns current form navigation state.

HasFormNav Returns whether this device has form nav support.

SetNavState Sets current form navigation state.

Satellite Forms 8
Development Guide

280

Generic extension
The Generic extension provides a template for writing your own extensions for use in
Satellite Forms applications. The Generic extension has no useful methods nor
properties, and is intended solely for use as a starting point for extension development.

Platform(s): Palm OS and Pocket PC

GoogleMaps extension
The GoogleMaps extension enables you to launch the Google Maps application to
find a location, find a business, get directions to a location, or get directions from a
location. The GoogleMaps extension is a plug-in and has no properties.

Platform(s): Palm OS only

Sample project(s): GoogleMaps

GPS extension
The GPS extension provides easy access to GPS data on Windows Mobile 5 and
higher devices, via the Windows Mobile GPS API. The GPS extension is a plug-in
and has no properties.

Platform(s): Pocket PC only (Window Mobile 5+ OS version)

Sample project(s): GPS

SetNavControlFocus Sets current form navigation focus on specified form object.

Table 11.48 FormNavHelper extension methods (Continued)

Table 11.49 Generic extension method

Method Description

About Displays information about the extension in a dialog box.

Table 11.50 GoogleMaps extension methods

Method Description

About Displays information about the extension in a dialog box.

GM_LaunchGoogleMaps Launches GoogleMaps app to find a location/business/directions.

Table 11.51 GPS extension methods

Method Description

About Displays information about the extension in a dialog box.

GPS_CalcDistance Calculate the distance in metres between two GPS waypoints.

GPS_CloseGPS Close connection to GPS receiver, powering down GPS receiver if no
other tasks are also using it.

GPS_GetPosLatitude Get Latitude in decimal degrees from GPS position data.

GPS_GetPosLongitude Get Longitude in decimal degrees from GPS position data.

Satellite Forms Scripting Language Reference
The Satellite Forms object model

281

HoneywellScan control
The HoneywellScan control interfaces to an integrated bar code scanner on many
Honeywell Windows Mobile devices.

Platform(s): Windows Mobile (Honeywell devices only)

Sample project(s): HoneywellScan

GPS_GetPosOther Get other GPS position data, indicated by other information type.

GPS_GetPosUTCTime Get UTC Time from GPS position data.

GPS_GetValidFields Check whether GPS is returning valid position data.

GPS_HasGPSAPI Check whether the current device includes the WM5 GPS API.

GPS_OpenGPS Open connection to GPS receiver, powering up GPS receiver if
necessary.

Table 11.51 GPS extension methods (Continued)

Table 11.52 HoneywellScan control properties

Property Description

AFTERSCAN Specifies a button control to execute immediately after performing the
barcode scan, instead of executing the OnClick action of the
HoneywellScan control.

BADREADEVENT Controls whether or not the scanner OnClick event will be fired on bad
read scan attempts, in addition to good scan reads.

Table 11.53 HoneywellScan control methods

Method Description

About Displays information about the control in a dialog box.

DoScan Triggers a scan as if the hardware scan button was pressed.

EnableSymbology Enable or disable the decoding of a specific symbology (barcode type).

GetScanData Returns the scanned data from the last scan operation.

GetScanDataLen Returns the length in bytes of the scanned data from the last scan
operation.

GetScanOkay Returns true or false to indicate if the last scan operation was
successful.

GetScanType Returns the symbol code from the last scan operation.

IsHoneywellScanner Returns whether current device is an Honeywell scanner.

IsScannerEnabled Returns whether the scanner is enabled (true) or disabled (false).

ScannerDisable Disables the scanner.

ScannerEnable Enables the scanner.

SetAfterScan Specifies a button control or the HoneywellScan control's OnClick event
to execute immediately after the scan event is fired.

Satellite Forms 8
Development Guide

282

HyperLink control
The HyperLink control is a custom control that makes it simple to add colored,
underlined text links that respond to pen taps, just like a hyperlink in a web browser.
The GoogleMaps extension is a plug-in and has no properties.

Platform(s): Palm OS and Pocket PC

Sample project(s): HyperLink

SetBadReadEvent Specifies whether to fire the scan OnClick event on a bad read attempt.

SetSymbologyDefaults Set a specific symbology to use standard default decoding parameters.

Table 11.53 HoneywellScan control methods (Continued)

Table 11.54 HyperLink control properties

Property Description

Beep Set the desired beep sound when the HyperLink is tapped.

Color Set the color the HyperLink is drawn with.

Font Set the font of the HyperLink text.

Style Set whether the HyperLink underline is drawn as a solid line (0) or dotted
line (1) or no line (2) when the form opens.

Text Set the HyperLink text (can be blank if desired).

Visible Set whether or not the HyperLink is displayed when the form opens.

Table 11.55 HyperLink extension methods

Method Description

GetBeep Gets the BEEP property of the control.

GetColor Gets the COLOR value for the control.

GetControlH Gets the control's height.

GetControlW Gets the control's width.

GetControlX Gets the control's top left X location.

GetControlY Gets the control's top left Y location.

GetFont Gets the current FONT of the control.

GetGULColor Gets the GULCOLOR (global underline color) of the control.

GetStyle Gets the current STYLE of the control.

GetText Gets the current TEXT of the control.

GetVisible Gets the current VISIBLE status of the control.

Hide Sets the Hyperlink control VISIBLE=false and redraws.

SetBeep Sets the BEEP property of the control.

SetBounds Sets the bounds (x,y position and width & height) of the control.

Satellite Forms Scripting Language Reference
The Satellite Forms object model

283

InkHelper extension
The InkHelper extension provides utility functions for working with Satellite Forms
Ink fields. It enables you to convert the ink data to other formats including a BMP
file, for easy integration with other software, on-device printing, etc. The InkHelper
extension is a plug-in and has no properties.

Platform(s): Palm OS and Pocket PC

Sample project(s): InkHelper

IntermecScan control
The IntermecScan control interfaces to an integrated bar code scanner on many
Intermec Pocket PC devices.

Platform(s): Pocket PC (Intermec devices only)

SetColor Sets the COLOR of the control.

SetFont Sets the FONT property of the control.

SetGULColor Sets the GULCOLOR (global underline color) of the control.

SetStyle Sets the STYLE property of the control.

SetText Sets the TEXT property of the control.

SetVisible Sets the VISIBLE property of the control and draws or erases.

Show Sets the Hyperlink control VISIBLE=true and redraws.

Table 11.55 HyperLink extension methods (Continued)

Table 11.56 InkHelper extension methods

Method Description

About Displays information about the extension in a dialog box.

IH_InkFieldToBitmap Save the contents of an ink field to a BMP file.

IH_InkFieldToHexText Return the contents of an ink field as hextext.

IH_FileToBinField Import a file into a (non-ink) binary field.

IH_FileToHexText Return the contents of a file as hextext.

IH_FileToUUEText Return the contents of a file as uuencoded text.

IH_DeleteFile Delete specified file (eg. delete a BMP after you are done with it).

IH_PalmFileSettings Specify PalmOS file settings used for other functions that access
files.

IH_BMPColorSettings Set foreground (pen) and background colors (8-bit RGB values) for
monochrome BMP file.

Satellite Forms 8
Development Guide

284

Sample project(s): IntermecScan

JanamUtils extension
The JanamUtils extension provides access to Janam XP20/XP30 hardware utility
functions like toggling the keypad backlight, vibrator, LED, 5V Power Out, and
Bluetooth power state.. See the JanamUtils sample project for a demonstration.

Platform(s): Janam XP20/XP30 Palm OS scanners only

Sample project(s): JanamUtils

Table 11.57 IntermecScan control properties

Property Description

AFTERSCAN Specifies a button control to execute immediately after performing the
barcode scan, instead of executing the OnClick action of the
IntermecScan control.

Table 11.58 IntermecScan control methods

Method Description

About Displays information about the control in a dialog box.

DoScan Triggers a scan as if the hardware scan button was pressed.

GetScanData Returns the scanned data from the last scan operation.

GetScanDataLen Returns the length in bytes of the scanned data from the last scan
operation.

GetScanOkay Returns true or false to indicate if the last scan operation was successful.

GetScanType Returns the symbol code from the last scan operation.

GetSettings Returns current scanner filter settings string.

IsIntermecScanner Returns whether current device is an Intermec scanner.

IsScannerEnabled Returns whether the scanner is enabled (true) or disabled (false).

ScannerDisable Disables the scanner.

ScannerEnable Enables the scanner.

SetAfterScan Specifies a button control or the IntermecScan control's OnClick event to
execute immediately after the scan event is fired.

SetSettings Sets current scanner filter settings.

Table 11.59 JanamUtils extension methods

Method Description

About Displays information about the extension in a dialog box.

JXP_5VPowerOut Get or Set the 5V Power Out (used by MSR attachment) setting on
Janam XP devices.

JXP_BTState Get or Set the BT State (whether Bluetooth is enabled or not) setting
on Janam XP units.

Satellite Forms Scripting Language Reference
The Satellite Forms object model

285

LaunchReturn extension
The LaunchReturn extension provides functions that help you restart your application
after the user leaves your app to run another program. LaunchReturn can be instructed
to 'listen' for the starting and stopping of another app, and can relaunch your app when
the other app is closed. LaunchReturn is only functional on Palm OS 5.x devices.

The LaunchReturn extension is a plug-in and has no properties.You must also install
the LaunchReturnHelper.prc file on the device in addition to the
SFE_LaunchReturn.prc file.

Platform(s): Palm OS version 5.0+ only

Sample project(s): LaunchReturn

LaunchURL extension
The LaunchURL extension enables you to launch a specified URL in a web browser
(Blazer for the Palm OS 5.x platform or Internet Explorer for the Pocket PC platform).
It also enables you to view local html and image files in the web browser. The
LaunchURL extension is a plug-in and has no properties. On the Pocket PC platform,
the LaunchURL extension can also be used to open documents and media files in their
default viewers, for example a Doc file in Pocket Word, or an MP3 audio file or
WMV video file. To open documents and media files, pass the full path and name of
the file in the URL parameter, instead of a standard URL.

Platform(s): Palm OS and Pocket PC

JXP_BuzzHiVolume Get or Set the Buzz Hi Volume setting on Janam XP units.

JXP_GreenLED Get or Set the Green LED setting on Janam XP units.

JXP_IsJanamXP Return whether the current device is a Janam XP unit.

JXP_KeyBacklight Get or Set the Key Backlight setting on Janam XP devices.

JXP_RedLED Get or Set the Red LED setting on Janam XP units.

JXP_Vibrator Get or Set the Vibrator setting on Janam XP handhelds.

Table 11.59 JanamUtils extension methods (Continued)

Table 11.60 LaunchReturn extension methods

Method Description

About Displays information about the extension in a dialog box.

PrepLaunchReturn Prepare to return to our app after switching to other app.

UnprepLaunchReturn Cancel preparation to return to our app after switching to other app.

LaunchApp Launch app via specified CreatorID.

PrepIncomingCall Prepare to listen for incoming call notifications.

UnprepIncomingCall Cancel preparation to listen for incoming call notifications.

CheckIncomingCall Check to see if there is an incoming phone call.

IsTreoPhone Check if device is a Treo Palm OS smartphone or not.

Satellite Forms 8
Development Guide

286

Sample project(s): LaunchURL

Math extension
The Math extension provides mathematical capabilities to your Satellite Forms
applications. The Math extension is a plug-in and has no properties.

Platform(s): Palm OS and Pocket PC

Sample project(s): Advanced Calculator

Table 11.61 LaunchURL extension methods

Method Description

About Displays information about the extension in a dialog box.

LaunchURL Launch a specified URL or view local html and image files in the default
device web browser.

Table 11.62 Math extension methods

Method Description

About Displays information about the extension in a dialog box.

ABS Returns the absolute value of the specified number.

ACOS Calculates the arc cosine of the specified number.

ACOSH Calculates the hyperbolic arc cosine of the specified number.

ASIN Calculates the arc sine of the specified number.

ASINH Calculates the hyperbolic arc sine of the specified number.

ATAN Calculates the arc tangent of the specified number.

ATAN2 Calculates the arc tangent of x/y.

ATANH Calculates the hyperbolic arc tangent of the specified number.

CBRT Calculates the cube root of the specified number.

COPYSIGN Returns x with the sign of y.

COS Calculates the cosine of the specified number.

COSH Calculates the hyperbolic cosine of the specified number.

DREM Calculates the remainder of x/y.

EXP Calculates the exponential e to the x.

EXPM1 Calculates the exponential e to the x -1.

FREXPFRAC Breaks given value into normalized fraction and an integral power
of 2. Returns the fractional value.

FREXPINT Breaks given value into normalized fraction and an integral power
of 2. Returns the integer value.

ILOGB Binary exponent of non-zero x. Returns an integer.

ISINF Evaluates a number for its relationship to positive or negative
infinity.

Satellite Forms Scripting Language Reference
The Satellite Forms object model

287

Memory extension
The Memory extension provides functions to allocate, read, and write blocks of
memory for your Satellite Forms applications. The Memory extension is a plug-in and
has no properties.

Platform(s): Palm OS and Pocket PC

Sample project(s): Memory

LDEXP Calculates exponential (x * 2) to the y.

LOG Calculates the natural logarithm of x.

LOG10 Calculates the base ten logarithm of x.

LOG2 Calculates the base two logarithm of x.

MODFRAC Breaks a floating-point number into integer and fractional parts,
returning the fractional part.

MODFINT Breaks a floating-point number into integer and fractional parts,
returning the integer part.

POW Calculates the exponential x to the y.

ROUND Rounds a number to nearest decimal place specified.

SIN Computes the sine of the specified number.

SINH Computes the hyperbolic sine of the specified number.

SQROOT Calculates the positive square root of the specified number.

TAN Calculates the tangent of the specified number.

TANH Calculates the hyperbolic tangent of the specified number.

Table 11.62 Math extension methods (Continued)

Table 11.63 Memory extension methods

Method Description

MemoryAbout Displays information about the Memory extension in a dialog box.

MemoryAllocate Allocates dynamic memory.

MemoryCompare Compares two blocks of memory.

MemoryCopy Copies one block of dynamic memory to another.

MemoryFree Frees memory allocated using MemoryAllocate.

MemoryGetByte Returns the value of the specified byte in memory.

MemoryGetString Returns the value of the specified string in memory.

MemoryReallocate Resizes a block of dynamic memory.

MemoryReverse Reverses a block of dynamic memory.

MemorySearch Searches for a block of memory in another block of memory.

MemorySet Sets a range of memory to the specified value.

MemorySetByte Sets the value of the specified byte in memory.

Satellite Forms 8
Development Guide

288

Printer extension
The Printer extension provides printing capabilities for a Seiko DPU-414, Epson-
compatible printer to your Satellite Forms applications. The Printer extension is a
plug-in and has no properties.

Platform(s): Palm OS only

Sample project(s): Printer

MemorySetString Sets the value of the specified string in memory.

Table 11.63 Memory extension methods (Continued)

Table 11.64 Printer extension methods

Method Description

About Displays information about the extension in a dialog box.

ClosePort Closes the serial port, which saves battery power.

LBackSp Sends a Backspace character to the printer.

LBell Sends a Bell character to the printer.

LCancel Sends a CAN character to the printer.

LCondensed Sets the printer’s condensed print mode.

LDDGraphics Sets double density graphics mode for the specified number of
following bytes.

LDoubleStrike Sets printer’s double strike print mode.

LDoubleWidth Sets double width mode for noChars characters.

LDoubleWidthN Sets the printer’s double width print mode.

LEmphasized Sets the printer’s emphasized print mode.

LFormFeed Sends a Form Feed character to printer.

LIntnlChars Sets the printer’s international character set.

LLineFeed Moves the print head the specified number of dots.

LLtMargin Sets the left margin to the specified number of characters.

LPageLength Set printer's page length to the specified number of lines.

LPrint Prints a string.

LPrintCR Prints a carriage return. Use LPrintLn to print the characters
specified by LSetAutoLF.

LPrintDir Sets the print direction.

LPrintF Prints the specified text in a column of the specified width.

LPrintGraph Prints graphics in single or double density mode.

LPrintLF Prints a Line Feed character.

LPrintLN Prints text followed by a Carriage Return and a Line Feed if
AutoLF is set to TRUE.

Satellite Forms Scripting Language Reference
The Satellite Forms object model

289

Puma Beam DB extension
The Puma Beam DB extension provides infrared (IR) data file transmission
capabilities to your Satellite Forms applications. The Puma Beam DB extension is a
plug-in and has no properties.

Platform(s): Palm OS only

Sample project(s): Beam It!

Puma Data Manager extension
The Puma Data Manager extension provides access to a selected set of Palm OS Data
Manager APIs to your Satellite Forms applications. The Puma Data Manager
extension is a plug-in and has no properties.

Platform(s): Palm OS only

LRepeatStr Prints the specified string the specified number of times.

LReset Sends a Reset command to the printer.

LRtMargin Sets the right margin to the specified number of characters.

LSDGraphics Sets single density graphics mode for the specified number of
following bytes.

LSelectFont Sets the font.

LSetAutoLF Sets the AutoLF attribute.

LSetGraphics Sets the printer’s graphics mode and number of bytes. Supports
quad density graphics.

LSetLine Sets line height, usually 11 or 15 dots.

LSubscript Sets the printer’s subscript mode to the specified number of dots.

LSuperscript Sets the printer’s superscript mode to the specified number of dots.

LTab Sends a Tab character to the printer.

OpenPort Opens the serial port using the settings specified with SetPort.
Opening the serial port uses more battery power.

SetPort Sets the serial port parameters.

SetPrinter No additional printers are supported. Must be set to 0.

Table 11.64 Printer extension methods (Continued)

Table 11.65 Puma Beam DB extension methods

Method Description

PBD_About Displays information about the extension in a dialog box.

PBD_BeamDb Sends a Palm database file to another device using the IR port.

PBD_SendDbByName Sends Palm Db specified by name, giving user option to select
transport method (Beam, Bluetooth, SMS, VersaMail, etc.)

PBD_Version Returns the version number of this extension.

Satellite Forms 8
Development Guide

290

Sample project(s): View It!

Table 11.66 Puma Data Manager extension methods

Method Description

PDM_About Displays information about the extension in a dialog box.

PDM_DeleteDb Deletes the specified database.

PDM_GetDbAppInfoID Returns the app info ID of the LastDb cache (Local ID).

PDM_GetDbAttributes Returns attributes of the LastDb cache.

PDM_GetDbBckUpDate Returns the last back up date of the LastDb cache.

PDM_GetDbBckUpDateStr Returns the last back up date of the LastDb cache as a
string.

PDM_GetDbCardNo Returns the card number of the LastDb cache.

PDM_GetDbCrDate Returns the creation date of the LastDb cache.

PDM_GetDbCrDateStr Returns the creation date of the LastDb cache as a string.

PDM_GetDbCreatorID Returns the creator ID of the LastDb cache.

PDM_GetDbDataBytes Returns the number of bytes in the data portion of the
LastDb cache.

PDM_GetDbModDate Returns the modification date of the LastDb cache.

PDM_GetDbModDateStr Returns the modification date of the LastDb cache as a
string.

PDM_GetDbModNum Returns the number of modifications to the LastDb cache.

PDM_GetDbName Returns the name of the last database loaded.

PDM_GetDbNumRecords Returns the number of records contained in the LastDb
cache.

PDM_GetDbSortInfoID Returns the sort info ID of the LastDb cache.

PDM_GetDbTotalBytes Returns the number of bytes in the LastDb cache.

PDM_GetDbType Returns the type of the LastDb cache.

PDM_GetDbVersion Returns the version number of the LastDb cache.

PDM_GetLastError Returns the last error code.

PDM_GetNextDb Returns local ID of the next database that matches the
search criteria. Consecutive calls to this method traverses all
databases matching the search criteria.

PDM_GetNumberOfMatchingDb Returns the number of databases that match the search
criteria.

PDM_LoadDb Loads the specified database into the LastDb cache.

PDM_NewDbIterator Starts a new search.

PDM_SetDbAttributes Sets the attributes of the specified database.

PDM_Version Returns the version number of this extension.

Satellite Forms Scripting Language Reference
The Satellite Forms object model

291

Puma Error Manager extension
The Puma Error Manager extension provides useful Palm error handling capabilities
to your Satellite Forms applications. The Puma Error Manager extension is a plug-in
and has no properties.

Platform(s): Palm OS only

Puma Resource Manager extension
The Puma Resource Manager extension provides full access to Palm OS resources and
their databases to your Satellite Forms applications. The Puma Resource Manager
extension is a plug-in and has no properties.

Platform(s): Palm OS only

Sample project(s): Resource Viewer

Table 11.67 Puma Error Manager extension methods

Method Description

PEM_About Displays information about the extension in a dialog box.

PEM_GetErrorString Converts an error code to a string.

PEM_Version Returns the version number of this extension.

Table 11.68 Puma Resource Manager extension methods

Method Description

About Displays information about the extension in a dialog box.

RM_AttachCurrentResource Attaches the current resource to the database.

RM_CloseDatabase Closes the current database.

RM_DetachedResToCurRes Moves the detached resource to the current resource.

RM_DetachResource Detaches the resource and stores the current pointer.

RM_FindResource Finds the current resource by resource type and ID.

RM_FindResourceByIndex Searches for the resource by type and index number.

RM_Get1Resource Returns the resource from the most currently opened
database.

RM_GetLastErrorNumber Returns the last Resource Manager error code.

RM_GetResource Returns the resource specified by the type and ID.

RM_GetResourceByIndex Returns the resource specified by index.

RM_LockRes Locks the current resource in memory.

RM_NewResource Adds a new resource to the open database.

RM_NumResource Returns the number of resources in the current database.

RM_OpenDatabase Open the specified resource database.

RM_OpenDBNoOverlay Open the specified resource database with no modifications
to the overlay.

Satellite Forms 8
Development Guide

292

Px Screen Tool extension
The Px Screen Tool extension provides useful routines to manipulate the Palm display
screen to your Satellite Forms applications. The Px Screen Tool extension is a plug-in
and has no properties.

Platform(s): Palm OS only

Random Number Generator extension
The Random Number Generator extension provides pseudo-random number
generation capabilities to your Satellite Forms applications. The Random Number
Generator extension has no properties. This extension is based on the drand48
standard. This standard generates numbers through 48-bit arithmetic provided by the
following equation: X[I + 1]=(a*X[I] + c)mod(248) where a equals
0x5DEECE66D and c equals 0xB. The Random Number Generator extension is a plug-
in and has no properties.

Platform(s): Palm OS and Pocket PC

Sample project(s): Random

RM_PassResPtr Returns a pointer to the memory block of a locked resource.

RM_ReleaseResource Releases the current resource.

RM_RemoveResource Removes the specified resource from the current database.

RM_ResizeResource Resizes the current resource.

RM_ResourceInfo Returns information about the specified resource.

RM_ResTypeInfo Returns the resource type.

RM_SearchResource Searches for a resource by type and local ID.

RM_SetResourceInfo Sets the resource info for the current resource.

RM_UnlockRes Unlocks the current resource. Use only after using
RM_LockRes.

Table 11.68 Puma Resource Manager extension methods (Continued)

Table 11.69 Px Screen Tool extension methods

Method Description

About Displays information about the extension in a dialog box.

RestoreScreenDepth Restores Palm screen depth to the value before using
SetMaxScreenDepth.

SetMaxScreenDepth Sets the Palm screen to the maximum screen depth. Use
RestoreScreenDepth to restore to the screen to its original
depth. You can use this method to enable grayscale support on a
monochrome Palm handheld.

Version Returns the version number of this extension.

Table 11.70 Random Number Generator extension methods

Method Description

Satellite Forms Scripting Language Reference
The Satellite Forms object model

293

ScreenSize extension
The ScreenSize extension gives you information about the current screen size on the
Pocket PC device. It can be used as a plug-in extension just by calling the
GetScreenSize, GetScreenWidth, or GetScreenHeight script functions as desired, or it
can be used as an SFX control that will fire an event when the screen size changes.
There are no SFX control properties for the ScreenSize control.

Platform(s): Pocket PC only

Sample project(s): ScreenSize

Serial Port extension
The Serial Port extension provides serial port read/write functionality to your Satellite
Forms applications. The Serial Port extension is a plug-in and has no properties.

Platform(s): Palm OS and Pocket PC

Sample project(s): Terminal

About Displays information about the extension in a dialog box.

DRand48 Returns a pseudo-random number greater than 0 but less than or
equal to 1.

Seed_Val Returns the seed value entered for use with SRand48.

Seed_Val16V Returns 16 bits of the three orders of the 48-bit seed value used
with Seed48.

Seed48 Sets the 48-bit seed value.

SRand48 Assigns the highest 32 bits of X[0] to the specified integer value.
Assigns the remaining 16 bits 0x330E.

X_Buffer Returns the current X[i] value from
X[i] = (a*X[i-1] + c)mod 248.

X_Initial Returns 16 bits of the initial 48-bit X[i] value.

X_Last Returns the last X[i-1] value from
X[i] = (a*X[i-1] + c)mod 248.

Table 11.70 Random Number Generator extension methods (Continued)

Table 11.71 ScreenSize extension methods

Method Description

About Displays information about the extension in a dialog box.

GetScreenHeight Return screen height.

GetScreenSize Return screen dimensions in string WWWxHHH.

GetScreenWidth Return screen width.

Table 11.72 Serial Port extension methods

Method Description

SerialPortAbout Displays information about the extension in a dialog box.

Satellite Forms 8
Development Guide

294

ShowImage control
The ShowImage extension is a custom control that provides Satellite Forms Pocket
PC applications the ability to display common image files including JPG/GIF/PNG/
BMP and more on the current form. Images are stretched/shrunk to fit the specified
control rectangle. The ShowImage control can also act like a button control by
handling pen taps if desired.

Platform(s): Pocket PC only

Sample project(s): ShowImage

SerialPortAllocate Creates an instance of a serial port.

SerialPortClose Closes the specified serial port.

SerialPortConfigure Configures the specified serial port.

SerialPortFree Deletes an instance of a serial port.

SerialPortGetBytesAvailable Returns the number of bytes available.

SerialPortGetLastError Returns a string containing the last error message.

SerialPortOpenBinary Opens the specified serial port in binary mode.

SerialPortOpenText Opens the specified serial port in text mode.

SerialPortRead Reads data from the specified serial port.

SerialPortReadByte Reads one byte of data from the specified serial port.

SerialPortReadString Reads a string of data from the specified serial port.

SerialPortSetBuffer Sets the data buffer. The default data buffer is 512 bytes.

SerialPortWrite Writes data to the specified serial port.

SerialPortWriteByte Writes a byte of data to the specified serial port.

SerialPortWriteString Writes a string of data to the specified serial port.

Table 11.72 Serial Port extension methods (Continued)

Table 11.73 ShowImage control properties

Property Description

VISIBLE Determines whether the ShowImage control is visible (true) or hidden
(false) on the form when the form opens.

BORDER Determines whether a border is drawn around the ShowImage control.

DOBUTTONBEHAVIOR Determines whether the ShowImage control acts like a button control by
responding to pen taps.

IMAGEFILE The path and name of the image file to display.

Table 11.74 ShowImage extension methods

Method Description

About Displays information about the extension in a dialog box.

Satellite Forms Scripting Language Reference
The Satellite Forms object model

295

Slider control
The Slider control provides an additional control for use in Satellite Forms
applications.

Platform(s): Palm OS and Pocket PC

Sample project(s): SFX Control

Note The Color Slider control is usually a better choice, as it supports color.

GetBorder Get BORDER property of ShowImage control.

GetButtonBehavior Get DOBUTTONBEHAVIOR property of ShowImage control.

GetCtrlPosition Get position and size of ShowImage control.

GetImageFile Get IMAGEFILE property of ShowImage control.

GetVisible Get VISIBLE property of ShowImage control.

SetBorder Set BORDER property of ShowImage control.

SetButtonBehavior Set DOBUTTONBEHAVIOR property of ShowImage control.

SetCtrlPosition Set position and size of ShowImage control.

SetImageFile Set IMAGEFILE property of ShowImage control.

SetVisible Set VISIBLE property of ShowImage control (show or hide control).

ShowImageFile Show an image file at the specified position by painting it directly
onto the form (not as a custom control).

Table 11.74 ShowImage extension methods (Continued)

Table 11.75 Slider control properties

Property Description

BEEP Specifies whether the control should beep when the user interacts with it.
If set 0, no beep occurs. If set to 1, a beep sounds when the user first
touches the control. The default setting is 0.

DSOURCE Fields("col_name") specifies that "col_name" (double-quotes required) in
the form’s linked table that contains the control will be used to load and
store the value of the control. The default value is “none”.

FASTTRACK Specifies how often the OnClick event fires:

• 0 = Every time the pen moves

• 1 = After the pen is lifted
The default setting is 0.

INITVAL Specifies that the initial position of the control's bar should be at a number
between MIN and MAX. The default setting is 0.

MIN Specifies the minimum position of the control. The default setting is 0.

MAX Specifies the maximum position of the control. The default setting is 100.

Satellite Forms 8
Development Guide

296

SocketScan control
The SocketScan control interfaces to a Socket Mobile bar code reader card or
Cordless Hand Scanner (CHS) on Palm OS and Pocket PC devices.

Platform(s): Palm OS and Pocket PC

Sample project(s): SocketScan

STYLE Specifies the style of slider control:

• 0 = Progress Bar: no user interaction)

• 1 = Slider with marker: user can slide the marker

• 2 = Slider with no marker: user taps the bar to indicate the desired
position

• 3 = 3D Slider: color handhelds only
 The default setting is 1.

VISIBLE Specifies whether the control is visible. The default value is TRUE.

Table 11.76 Slider control methods

Method Description

About Displays information about the control in a dialog box.

FastTrack Specifies how often the OnClick event fires.

SldGetPosition Returns the current position of the control.

SldSetMinMax Sets the minimum and maximum values.

SldSetPosition Sets the position of the control.

SetVisible Makes the control visible or invisible.

Table 11.75 Slider control properties (Continued)

Table 11.77 SocketScan control properties

Property Description

AFTERSCAN Specifies a button control to execute immediately after performing the
barcode scan, instead of executing the OnClick action of the SocketScan
control.

BEFORESCAN Specifies a button control to execute immediately before performing the
barcode scan.

CHSINDICATOR Specifies the indicator method to use on the CHS for a good scan.

CHSKEEPALIVE Override the system auto off time *while* the PDA is connected to the
CHS scanner.

SCANTRIGGER1 ...
SCANTRIGGER4

Specifies a key code to trigger the barcode scan.

Table 11.78 SocketScan control methods

Method Description

Satellite Forms Scripting Language Reference
The Satellite Forms object model

297

Square Root extension
The Square Root extension provides a square root function to your Satellite Forms
applications and serves as an example of how to write and implement an extension.
The Square Root extension is a plug-in and has no properties.

Platform(s): Palm OS and Pocket PC

Sample project(s): Square Root

About Displays information about the control in a dialog box.

CHSConnect Attempt to connect to the CHS via BlueTooth wireless.

CHSDisconnect Disconnect from the CHS and close the BlueTooth connection.

CHSDoScan Performs a scan with CHS.

CHSGetIndicator Gets the current CHSINDICATOR value.

CHSGetKeepAlive Gets the current CHSKEEPALIVE value.

CHSReady Returns true or false to indicate if the CHS is connected and ready.

CHSSetIndicator Sets the CHSINDICATOR value.

CHSSetKeepAlive Sets the CHSKEEPALIVE value.

DoScan Performs a scan and returns true or false to indicate if the scan was
successful.

GetScanData Returns the scanned data from the last scan operation.

GetScanOkay Returns true or false to indicate if the last scan operation was successful.

GetScanParam Returns the specified scanner parameter value.

GetScanTrigger Returns a specified scan trigger keycode.

GetScanType Returns the symbol code from the last scan operation.

ScannerDisable Disnables the scanner. (Pocket PC only)

ScannerEnable Enables the scanner. (Pocket PC only)

ScannerReady Returns true or false to indicate if the scanner card is inserted and ready.

SetAfterScan Specifies a button control or the SocketScan control's OnClick event to
execute immediately after the scan event is fired.

SetBeforeScan Specifies a button control to execute immediately before the scan event is
fired.

SetScanParam Sets the specified scanner parameter value.

SetScanToDefaults Resets all the scanner parameters to factory defaults.

SetScanTrigger Specifies a keycode that will trigger a scan.

Table 11.78 SocketScan control methods (Continued)

Table 11.79 Square Root extension methods

Method Description

About Displays information about the extension in a dialog box.

Satellite Forms 8
Development Guide

298

Strings extension
The Strings extension provides string manipulation functions for your Satellite Forms
applications, similar to the string functions in Visual Basic. The Strings extension is a
plug-in and has no properties.

Platform(s): Palm OS and Pocket PC

Sample project(s): Strings

Symbol Integrated Scanner control
The Symbol Integrated Scanner control interfaces to an integrated bar code reader on
many Symbol and Janam Palm OS scanners, and Symbol and Janam Pocket PC
handheld scanners.

SqrRoot Computes the square root of a number.

Table 11.79 Square Root extension methods (Continued)

Table 11.80 Strings extension methods

Method Description

About Displays information about the extension in a dialog box.

FormatDate Formats a date according to the format expression.

FormatDateN Formats a date value according to the format expression.

FormatTime Formats a time according to the format expression.

FormatTimeN Formats a time value according to the format expression.

HexStringFromInt Converts an integer into a string of hex.

InStr Finds occurrence of one string within another.

IntFromHexString Converts a string of hex into an integer.

LCase Converts string to all lower case.

LTrim Trims leading spaces.

Pad Pads a string with defined character to defined length.

RTrim Trims trailing spaces.

Replace Replace a substring with another substring, using a case sensitive
comparison.

StrCompare Performs case sensitive compare of two strings.

StrCompSort Performs case sensitive compare of two strings.

String Returns a repeating character string of the length specified.

SystemDateFormat Returns system date format string.

SystemTimeFormat Returns system time format string.

Trim Trims leading and trailing spaces.

UCase Converts string to all upper case.

Satellite Forms Scripting Language Reference
The Satellite Forms object model

299

Platform(s): Palm OS and Pocket PC

Sample project(s): Simple Scanner Demo, Bar Code, and Function Test

Table 11.81 Symbol Integrated Scanner control properties

Property Description

AFTERSCAN A Button control to execute after scan is received. This property is
available only when you use the Process method.

BATTLOW A control to execute after a scanBatteryError event. If no control is
assigned, the default message appears. If the control's script includes the
FAIL keyword, the default message does not appear.

BEEPAFTER Beep after GetScan returns data. Valid values are "On" and "Off". This
property is available only when you use the Process method.

BEFORESCAN A Button to execute before scan input is saved but after CtrlAdv and
RecordAdv operations are performed. Use to save the old value before
it is modified or use to Cancel the current scan. This property is available
only when you use the Process method.

CTRLADV Automatically advance to next Edit control or record in sequence. Calls
RecordAdv method when returning to the first Edit control. Valid values
are "On" and "Off". This property is available only when you use the
Process method.

RECORDADV Sets the Record Advance mode.Valid values are:

• "Off" Never changes the record. You must do so manually using the
AFTERSCAN property.

• "On" Advances to last record and stops.

• "AlwaysCrt" Creates a new record after last Edit control.

• "CrtAtEnd" Advance through the records, create new after last record.

SETFOCUS Sets focus to the Bar Code Reader control after scan. Valid values are
"On" and "Off". This property is available only when you use the
Process method.

Table 11.82 Symbol Integrated Scanner control methods

Method Description

About Displays information about the control in a dialog box.

Aim Sets the laser mode, either Aim or Scan.

AimDuration

BarcodeLengths Sets the scanner parameters.

BeepAfter Beeps when the scan is complete.

BidirectionalRedundancy Enables and disables bidirectional redundancy.

CheckDigit Sets the Check Digit setting.

ClsiEditing

Code32Prefix

Satellite Forms 8
Development Guide

300

Code39CheckDigitVer

Code39FullAscii

CtrlAdv Turns the CTRLADV property on or off.

DecodeLedOnTime Sets the Decode LED on time property.

DecoderVersion Returns the Symbol Decoder version as a string.

DecodeUpcEanRedun

DecodeUpcEanSupp

DisableScanner Turns off the serial port and disables scanning. Uses less battery
power.

EanZeroExtend

EnableScanner Turns on the serial port and enables scanning. Uses more battery
power.

FollowCursor Tapping a control makes it next to scan.

GetIndex Returns the index of the current control.

GetRecordAdvMode Returns the Record Advance Mode setting.

GetScan Returns a string of scanned data.

GetType Returns a string indicating the type of barcode just scanned.

GetTypeSettings Returns the barcode types currently enabled.

HotSerResponseTimeout

I2of5CheckDigit

IsSymbolUnit Determines whether the device is a Symbol unit.

LaserOnTime

LedOn Turns the LED on or off.

LinCodeTypeSecurLevel

MsiPlesseyCkDigitAlg

MsiPlesseyCkDigits

NotisEditing

PortDriverVersion Returns a string indicating the Symbol Port Driver Version.

PrefixSuffixValues

Process Call from a Timer event to process automatic events.

RecordAdv Sets the Record Advance mode.

ResetCtrls Sets the index to the first control and cancels Record Advance mode.

RestoreDefaults Restores scanner default settings.

ScanAngle Selects Narrow or Wide scan angle.

ScanAvail Returns the integer byte count in the receive buffer.

Table 11.82 Symbol Integrated Scanner control methods (Continued)

Satellite Forms Scripting Language Reference
The Satellite Forms object model

301

ScanManagerVersion Returns a string indicating the Symbol Scan Manager version.

SetbarBOOKLAND_EAN Enables or disables reading this barcode type.

SetbarCODABAR Enables or disables reading this barcode type.

SetbarCODE128 Enables or disables reading this barcode type.

SetbarCODE39 Enables or disables reading this barcode type.

SetbarCODE93 Enables or disables reading this barcode type.

SetbarCOUPON Enables or disables reading this barcode type.

SetbarD25 Enables or disables reading this barcode type.

SetbarEAN13 Enables or disables reading this barcode type.

SetbarEAN8 Enables or disables reading this barcode type.

SetBarExtra Enables or disables extended barcode types not previously handled.

SetbarI2OF5 Enables or disables reading this barcode type.

SetbarISBT128 Enables or disables reading this barcode type.

SetbarMSI_PLESSEY Enables or disables reading this barcode type.

SetbarPDF417 Enables or disables reading this barcode type.

SetbarTRIOPTIC Enables or disables reading this barcode type.

SetbarUCC_EAN128 Enables or disables reading this barcode type.

SetbarUPCA Enables or disables reading this barcode type.

SetbarUPCE Enables or disables reading this barcode type.

SetbarUPCE1 Enables or disables reading this barcode type.

Set Convert

SetFocus (Symbol
Integrated Scanner)

Sets focus to the Bar Code Reader control after scan.

SetIndex Sets the index of the current control. Uses the next control for the
next scan.

SetPort Ignored. Provided for compatibility only.

SetTermChar Ignored. Provided for compatibility only.

SetTypeSettings Sets the barcode types to be enabled.

SkipAdvance Indicates whether to stay on same control for the next scan.

StartDecode Starts scanning with the specified laser mode.

StripTerm Ignored. Provided for compatibility only.

TermRecd Returns TRUE if the termination character is last character in the
string. Use after GetScan to verify that the termination character
was received.

TransmissionFormat

TransmitCodeIDChar

Table 11.82 Symbol Integrated Scanner control methods (Continued)

Satellite Forms 8
Development Guide

302

Symbol MSR control
The Symbol MSR (Magnetic Stripe Reader) control interfaces a Symbol Palm OS
scanner to a magnetic stripe reader through the serial port.

Platform(s): Palm OS only

Sample project(s): MSR

TriggerMode Sets the triggering mode.

UpcEanSecurLevel

UpcPreamble

Table 11.82 Symbol Integrated Scanner control methods (Continued)

Table 11.83 Symbol MSR control methods

Method Description

mAbout Displays information about the control in a dialog box.

mArmToRead Enables the MSR to be ready for a card swipe in buffered mode.

mClose Closes the MSR Manager Library and frees resources.

mGetAddedField Returns the MSR added field string for the specified field number.

mGetBufferMode Returns the MSR buffer mode setting.

mGetDataBuffer Requests card data using the current Buffered Mode setting.

mGetDataEditSetting Returns the MSR data edit setting.

mGetDecoderMode Returns the MSR decoder mode setting.

mGetFlexibleField Returns the MSR flexible field string for the specified field number.

mGetLastError Returns the error status of the last MSR function executed.

mGetLibVersion Returns the MSR 3000 software library version.

mGetLRCSetting Returns the MSR LRC setting.

mGetMSRVersion Returns the MSR 3000 version.

mGetPostamble Returns the MSR postamble string.

mGetPreamble Returns the MSR preamble string.

mGetReservedChars Returns the MSR reserved character information for the specified
character number.

mGetSendCmd Returns the MSR send command string for the specified command
number.

mGetStatus Returns the status of the last magnetic stripe read.

mGetTerminator Returns the MSR terminator setting.

mGetTrackFormat Returns the MSR track format string for the specified track number.

mGetTrackSelection Returns the MSR track selection setting.

mGetTrackSeparator Returns the MSR track separator character.

Satellite Forms Scripting Language Reference
The Satellite Forms object model

303

SysUtils extension
The SysUtils extension provides access to OS (operating system) utility functions for
Palm OS and Pocket PC platforms. The SysUtils extension is a plug-in and has no
properties.

Platform(s): Palm OS and Pocket PC

Sample project(s): SysUtils

mOpen Loads and initializes the MSR 3000 Manager Library.

mReadMSRBuffer Requests Card Information until receiving data or timeout occurs.

mReadMSRUnbuffer Requests card data using unuffered mode.

mSelfDiagnose Initiates the MSR 3000 self test and returns the results.

mSetAddedField Sets added field strings for the MSR 3000.

mSetBufferMode Sets buffered or unbuffered mode for the MSR 3000.

mSetDataEdit Sets data edit mode.

mSetDataEditSend Sends data edit send commands to the MSR 3000.

mSetDecoderMode Sets the decoder mode for the MSR 3000.

mSetDefault Resets the MSR 3000 to its default settings.

mSetFlexibleField Sets flexible fields for data edit to the MSR 3000.

mSetLRC Sets LRC mode for the MSR 3000.

mSetPostamble Sets the postamble string for the MSR 3000.

mSetPreamble Sets the preamble string for the MSR 3000.

mSetReservedChar Sets the Special Reserved Characters for Generic Decoder only.

mSetTerminator Sets the terminator character setting for the MSR 3000.

mSetTrackFormat Sets the parameters for the Generic Decoder, including the Bit
Format, Start and End Sentinel.

mSetTrackSelection Sets the tracks that the MSR 3000 is to decode.

mSetTrackSeparator Sets the track separator character for the MSR 3000.

Table 11.83 Symbol MSR control methods (Continued)

Table 11.84 SysUtils extension methods

Method Description

About Displays information about the extension in a dialog box.

SU_BlockAllHotKeys Blocks all hotkey keypresses, but does not send a keypress that
can be caught in the OnKey event.

SU_CheckSystemPassword Returns 1 (true) or 0 (false) depending if the passed string is the
current system password or not.

SU_ClipboardTextGet Get the current text clip from the system clipboard.

SU_ClipboardTextSet Paste the passed string into the system clipboard.

Satellite Forms 8
Development Guide

304

SU_DelAppPref Deletes the saved preference given creatorID and pref index.

SU_GetAppPref Returns the saved preference value given creatorID and pref index.

SU_GetBatteryPercent Returns current battery charge level as a percentage (0-100) of full.

SU_GetDeviceID Get the device unique ID string.

SU_GetDeviceModel Get the device model string to help identify the device.

SU_GetMemInfo Get the amount of available memory.

SU_GetOSVersion Get the OS version string for the current device.

SU_GetOwnerName Get the device owner name.

SU_GetPlatform Get the device OS platform string, either PALMOS or POCKETPC.

SU_GetPluggedIn Returns 1 (true) if AC power is currently connected or 0 (false) if
not.

SU_HideStartIcon (Pocket PC only) Hide the Pocket PC Start icon in the taskbar.

SU_HotSync Initiates standard cradle hotsync by enqueuing HotSync virtual
keypress.

SU_LaunchApp Launch a specified application/document/URL, and pass an
optional parameter.

SU_LaunchAppAtEvent Launch a specified application/document/URL at a specified
system event.

SU_LaunchAppAtTime Launch a specified application/document/URL at a specified date
and time.

SU_ModemHotSync Initiates standard modem hotsync by enqueuing Modem HotSync
virtual keypress.

SU_ParseDelimText Returns a chunk of data in a string of delimited items.

SU_PasteChars Paste a string to the keyboard input queue as though it was typed
in. Input goes to the control that has the focus.

SU_PlaySoundFile (Pocket PC only) Play a WAV audio file.

SU_PowerOff Power off the device now, as if the power button had been pressed.

SU_QueueVirtualKey Post a virtual key to the keyboard input queue. Input goes to the
control that has the focus.

SU_RegDeleteKey Delete specified key from registry and all settings within it.

SU_RegReadKey Read specified key setting value from the registry.

SU_RegWriteKey Write specified key setting value to the registry.

SU_Reset Soft reset the device.

SU_SetAppPref Saves the preference value for the supplied creatorID and pref
index.

SU_SetAutoOffTime Sets the auto-off timer on the Palm.

SU_SetDeviceDateTime Set the device date and time to the passed value

Table 11.84 SysUtils extension methods (Continued)

Satellite Forms Scripting Language Reference
The Satellite Forms object model

305

TCPIP Winsock/Internet extension
The TCPIP Winsock extension for Pocket PC and Internet extension for Palm OS
enable you to connect to TCP/IP based networks (such as the Internet). It is a minimal
implementation of the Berkeley sockets standard, with which your application can
connect to hosts and send/receive data. The TCPIP Winsock & Internet extensions are
plug-ins and have no properties. The design and operation of these two extensions are
very similar, so they are listed here together.

Platform(s): Palm OS and Pocket PC

Sample project(s): TCPIP Sockets, SMTP

SU_SetHotKey Trap a hotkey keypress so that it sends a keypress that can be
caught in the OnKey event, instead of the system getting it first.

SU_SysIdleTimerReset Reset the system idle timer to prevent the device from dozing off
into sleep mode.

SU_TapScreen Enqueue a virtual pen tap at a screen coordinate.

Table 11.84 SysUtils extension methods (Continued)

Table 11.85 TCPIP Winsock/Internet extension methods

Method Description

About Displays information about the extension in a dialog box.

Close Closes a socket.

CloseNetLib Closes the net library. (PALM OS only)

Connect Connects a socket to a specified address and port.

ConvertDottedToInetAddr Converts a dotted decimal address (aaa.bbb.ccc.ddd) into a 32-bit
network address." (PALM OS only)

ConvertInetAddrToDotted Converts a 32-bit network address into a dotted decimal address
(aaa.bbb.ccc.ddd). (PALM OS only)

GetDomainName Retrieves the default domain added to names before DNS lookups
occur. (PALM OS only)

GetHostByAddr Performs a reverse DNS lookup on the passed IP address,
returning the name of the host machine.

GetHostByName Performs a DNS lookup on the passed host name.

GetLastError Retrieves the last error encountered by an extension method.

GetRecvTimeout Retrieves timeout value for Receive operations. (PALM OS only)

GetSendTimeout Retrieves timeout value for Send operations. (PALM OS only)

GetServiceByName Attempts to return the port number associated with a specified
service. (PALM OS only)

GetSocketLinger Gets the linger option for a socket.

OpenNetLib Opens the net library. (PALM OS only)

OpenNetworkPrefPanel Opens the standard Network Preference panel. (PALM OS only)

Receive Receives data from a socket.

Satellite Forms 8
Development Guide

306

UnitechScan control
The UnitechScan control interfaces to an integrated bar code scanner on many
Unitech Pocket PC devices.

Platform(s): Pocket PC (Unitech devices only)

Sample project(s): UnitechScan

Send Sends data to a socket.

SetDomainName Sets the default domain name added to names before DNS
lookups occur. (PALM OS only)

SetRecvTimeout Sets timeout value for Receive operations. (PALM OS only)

SetSendTimeout Sets timeout value for Send operations. (PALM OS only)

SetSocketLinger Sets the linger option on a socket.

Shutdown Shuts down a socket.

SKT_GetErrorString Convert the specified error to a string. (PALM OS only)

SKT_SetAutoOffTime Resets the automatic sleep timer. (PALM OS only)

Socket Creates a new socket.

WSACleanup De-initializes Winsock. (Pocket PC only)

WSAStartup Initializes Winsock for use. (Pocket PC only)

Table 11.85 TCPIP Winsock/Internet extension methods (Continued)

Table 11.86 UnitechScan control properties

Property Description

AFTERSCAN Specifies a button control to execute immediately after performing the
barcode scan, instead of executing the OnClick action of the UnitechScan
control.

GOODREADSOUND Specifies whether you want to have the good read beep sound played on
a successful scan.

LEDONTIME Sets length of time in milliseconds to show green LED on a good scan.

Table 11.87 UnitechScan control methods

Method Description

About Displays information about the control in a dialog box.

GetGoodReadSound Returns whether scanner is set to play the system good read sound when
a good scan is received.

GetLEDOnTime Returns length of time in milliseconds to show green LED when a good
scan is received.

GetScanData Returns the scanned data from the last scan operation.

GetScanDataLen Returns the length in bytes of the scanned data from the last scan
operation.

Satellite Forms Scripting Language Reference
The Satellite Forms object model

307

WM5Camera extension
The WM5Camera extension is a plugin extension for Pocket PC that enables your
Windows Mobile 5 and higher applications to capture photos or videos on camera-
equipped devices. Photos are saved to .JPG files in the folder you specify. Videos
should be saved to .3GP files in order to be compatible with MMS standards among
mobile phones.

Platform(s): Pocket PC only (Window Mobile 5+ OS version)

Sample project(s): WM5Camera

GetScanOkay Returns true or false to indicate if the last scan operation was successful.

GetScanType Returns the symbol code from the last scan operation.

IsScan2KeyEnabled Returns whether Unitech Scan2Key utility is currently enabled.

IsUnitechScanner Returns whether current device is a Unitech scanner.

ResetScanner Resets the scanner.

Scan2KeyEnable Enables or disables the Unitech Scan2Key utility.

ScannerDisable Disables the scanner.

ScannerEnable Enables the scanner.

SetAfterScan Specifies a button control or the UnitechScan control's OnClick event to
execute immediately after the scan event is fired.

SetGoodReadSound Sets whether to play the system good read sound when a good scan is
received.

SetLEDOnTime Sets length of time in milliseconds to show green LED when a good scan
is received.

Table 11.87 UnitechScan control methods (Continued)

Table 11.88 WM5Camera extension methods

Method Description

About Displays information about the extension in a dialog box.

CameraCapture Capture photo or video from camera, return result code.

Satellite Forms 8
Development Guide

308

Accessing properties
To access an object’s properties, use the following syntax:
object.[object.,...].Property

You can always specify the full object hierarchy. The following example sets the
value of Variable to the data stored in the Value field of the Orders table for the
current record:
Variable = Tables("Orders").Fields("Value").Data

You do not need to specify the default property. For the Fields object, Data is the
default property. The following syntax is equivalent to the example above:
Variable = Tables("Orders").Fields("Value")

You also do not need to specify objects that are implied. The Table object linked to the
current form is implied. If you are referencing this table, the following statement is
equivalent to the example above:
Variable = Fields("Value")

Note You must always specify at least one object when accessing a property.

Using methods
To access an object’s methods, use the following syntax:
object.[object.,...].Method

You can always specify the full object hierarchy. The following example sets the
value of Variable to the sum of the data stored in the Value column of the Orders table
for all records in the Orders table:
Variable = Tables("Orders").Sum("Value")

You do not need to specify objects that are implied. The Table object linked to the
current form is implied. If you are referencing this table, the following statement is
equivalent to the example above:
Variable = Tables().Sum("Value")

The only methods that do not require an object are the methods of the application:
FormatNumber, GetSysTime, MsgBox, Prompt, etc.. For all other methods, you must
specify the object.

Satellite Forms Scripting Language Reference
Creating a Satellite Forms script

309

Understanding events
The following figure illustrates the order in which Satellite Forms events occur for the
general case of a jump from one form (Form1) to another form (Form2).

Figure 11.2 Example of Satellite Forms event flow

Creating a Satellite Forms script
This section provides a brief example of how to use scripting in Satellite Forms. This
section assumes you have a working knowledge of Microsoft Visual Basic®. If you
need additional information on how to program with Visual Basic, any good
bookstore that carries computer books typically has several books on programming
with Microsoft Visual Basic. The Satellite Forms own scripting language is essentially

OnValidate Event Fires
for Form 1

Data Valid?

BeforeClose Event Fires
for Form 1

Form 1 Controls Erased

Form 2 Controls Created

AfterOpen Event Fires
for Form 2

Fail Validation:
Remain in Form 1

Form 2
Linked to a

Table?

Any Records
Satisfy all
Filters?

Form 2 Loaded with Data

AfterLoad Event Fires
for Form 2

AfterChange Event Fires
for Form 2

Yes

No

Yes

Yes

No

No

Satellite Forms 8
Development Guide

310

a subset of Visual Basic and shares much of its syntax. See Satellite Forms scripting
language reference on page 314 for detailed syntax and usage information.

To open the Script editor, select View > Show Scripts from the MobileApp Designer
menu, click the Show Scripts button on the Misc Toolbar, or press Ctrl + T on
your keyboard. If you have already set the action for a control to Run Script, you can
right-click the control either on the desktop or in the Workspace palette and select
Show Control Scripts from the context menu.

Satellite Forms scripting is event-driven. Click the Scripts tab in the Workspace
palette to access all scripts currently available in the project. The scripts are organized
under icons for each form and menu in the project, as well as an icon labelled Global
that contains application-global scripts. All script names are based on the event that
runs the script.

Each Form icon contains a series of event icons, each of which can execute a script.
Any control on a form for which you have set the action to Run Script also has an
event icon with a name that follows this pattern: OnClick <ControlName>.

Satellite Forms also supports both local and global variables. Variables are created
when you use the Dim statement to declare them. All variables are of type variant
when you first declare them. When you assign a value to a variable, the variable’s type
changes to match the assigned value, for example string, integer, or floating-point.
You can convert a variable from one type to another by using the Float, Int, and Str
functions. Variables you declare as in the Global icon tree are accessible to all forms
in an application. Variables you declare within a script for a particular event are local
in scope, which means you can only access them within that script, and only exist for
the duration of the script.

To create a script, simply type your code in the Script editing window for the form and
event you desire.

Procedure Create your first script

1 Open a new project.

2 Add an edit control, InputA, to Form 1 of the project.

3 Add a button, Button1, to Form 1 of the application.

4 Set the action for Button1 to Run Script.

5 Click the Edit Script... button on the Control Actions and Filters dialog box.

6 Type the following code in the scripting window:
'Example of Scripting in Satellite Forms
If InputA < 10 or InputA > 100 then

MsgBox("You must enter a number between 10 and 100.")
EndIf

7 Select Build > Compile Script, click the Compile Script button on the Misc
toolbar, or press Ctrl + F7 to compile the script.

8 Download the application to the handheld and run the application. MobileApp
Designer prompts you to save and then HotSync the application.

9 Test the script by running the application, entering data into InputA, and clicking
Button1.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language keywords and operators

311

Satellite Forms scripting language keywords and operators
The Satellite Forms scripting language provides many keywords and operators in
addition to the object properties and methods. The following tables summarize these
language elements by category. The next section provides an alphabetical listing and
description of all keywords, operators, object properties, and methods.

Satellite Forms scripting language keywords
The following table lists and describes the Satellite Forms scripting language
keywords:

Satellite Forms scripting language conversion operators
The following table lists and describes the Satellite Forms scripting language
conversion operators:

Table 11.89 Satellite Forms scripting language keywords

Keyword Description

Dim Dimensions (declares) a variable.

Exit Exits a script with success.

Fail Exits a script with failure.

For…To…Next Performs a For loop.

Function Defines a Global script function.

If … Then…Else…
ElseIf…EndIf

Conditionally executes statements.

Quit Exit the application and return to the app launcher.

Sub Defines a Global script subroutine.

While … Wend Performs a While loop.

Table 11.90 Satellite Forms scripting language conversion operators

Conversion
operator Description

Bool Converts a variable to a Boolean.

Empty Assigns a variable or table field to Empty state.

Float Converts a variable to floating point.

Int Converts a variable to an integer.

Int64 Converts a value to a 64-bit integer.

Str Converts a variable to a string.

Satellite Forms 8
Development Guide

312

Satellite Forms scripting language comparison operators
The following table lists and describes the Satellite Forms scripting language
comparison operators:

Satellite Forms scripting language arithmetic operators
The following table lists and describes the Satellite Forms scripting language
arithmetic operators:

Note Floating point numbers are limited to a total of 15 digits.

Table 11.91 Satellite Forms scripting language comparison operators

Comparison operator Description

= [equal] Assigns a value to a variable or evaluates equality of two values.

> [greater than] Evaluates whether a value is greater than another value.

>= [greater than or equal] Evaluates whether a value is greater than or equal to another value.

< [less than] Evaluates whether a value is less than another value.

<= [less than or equal] Evaluates whether a value is less than or equal to another value.

<> [not equal] Evaluates whether two values are not equal.

IsEmpty Evaluates whether a variable or table field is Empty.

Table 11.92 Satellite Forms scripting language arithmetic operators

Arithmetic operator Description

+ [add] Adds two numbers.

- [subtract] Subtracts one number from another.

* [multiply] Multiplies two numbers.

/ [divide, float] Divides one number by another; returns a floating-point value.

\ [divide, integer] Divides one number by another; returns an integer value.

Mod Returns remainder from integer division.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language keywords and operators

313

Satellite Forms scripting language logical and bitwise operators
The following table lists and describes the Satellite Forms scripting language logical
and bitwise operators:

Satellite Forms scripting language string operators
The following table lists and describes the Satellite Forms scripting language string
operators:

Table 11.93 Satellite Forms scripting language logical and bitwise operators

Logical or bitwise
operator

Description

Not [logical]
Not [bitwise]

When used with Booleans or conditions, negates a condition, value, or
variable. When used with a numerical argument, performs a bitwise Not
on the argument.

And [bitwise]And
[logical]
And [bitwise]And
[logical]

When used with Booleans or conditions, joins two conditions where both
conditions must evaluate to TRUE for the expression to evaluate to
TRUE. When used with numerical arguments, performs a bitwise And
between the arguments.

Or [logical]
Or [bitwise]

When used with Booleans or conditions, joins two conditions where only
one condition must evaluate to TRUE for the expression to evaluate to
TRUE. When used with numerical arguments, performs a bitwise Or
between the arguments.

Xor [logical]
Xor [bitwise]

When used with Booleans or conditions, joins two conditions where one
and only one condition must evaluate to TRUE for the expression to
evaluate to TRUE. When used with numerical arguments, performs a
bitwise Xor between the arguments.

Table 11.94 Satellite Forms scripting language string operators

String operator Description

& [concatenate] Concatenates two strings.

Left Returns the leftmost characters of a string.

Len Returns the length of a string.

Mid operator Returns a subset of characters of a string.

Mid statement Replaces a subset of characters in a string.

Right Returns the rightmost characters of a string.

Satellite Forms 8
Development Guide

314

Satellite Forms scripting language miscellaneous operators
The following table lists and describes miscellaneous Satellite Forms scripting
language operators.

Satellite Forms scripting language reference
This section provides an alphabetical listing of all keywords, properties, methods,
events, and operators the Satellite Forms scripting language supports. Each listing
provides detailed information and many provide sample code.

You may want to try some of the sample code yourself. You can do this by creating a
sample application containing the following objects:

• Twelve edit controls named InputA through InputF and OutputA through
OutputF.

• Two buttons named Button1 and Button2 with their action properties set to Run
Script.

• One table called Emps, with two columns called Name and Salary.

This application is sufficient to run the majority of the samples. Some samples may
require you to add additional controls or link controls to columns or types of columns.

Table 11.95 Satellite Forms scripting language miscellaneous operators

Operator Description

' [comment] Marks a comment that is not compiled.

_ [continue line] Enables a line of code to span multiple lines.

. [method, property] Accesses an object’s properties or executes its methods.

Asc Returns the ASCII value of a character.

Chr Returns the character associated with an ASCII value.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

315

+ [add]

' [comment]

& [concatenate]

Operand1 + Operand2
Adds two values or variables.
Parameters Operand1

Operand2
Value or variable to be added to Operand2.
Value or variable to be added to Operand1.

Return Value The sum of Operand 1 and Operand2.
Comments If both operands are integers, the result is an integer.

If either operand is floating point, the result is floating point.
If either operand is a string, the string operand is first converted to either an
integer or a floating point depending on the operand’s value. For example, the
string “2” is converted to an integer, while the string “2.4” is converted to a
floating point number. The operation then proceeds and the result is the same
as described above.
For floating-point calculations, the result is formatted to have the least number
of decimal places necessary. For example, if you add 2.10 and 2.00, the result
is 4.1. Use the FormatNumber method to format the result to the desired
number of decimal places.

Example 'Example of Addition
'InputA, InputB, and OutputA 'are edit controls.
OutputA = InputA + InputB

See Also // [divide, float], \ [divide, integer], FormatNumber, Mod, * [multiply], - [subtract]

' Comment
An Apostrophe anywhere in a line makes the rest of the line a comment.
Parameter Comment Text of comment
Return Value None
Comments The compiler ignores Comments in scripts.
Example 'Example of a comment

'InputA is an edit control.
InputA = 1 'Comments can also start here.

Operand1 & Operand2
Concatenates two string values or variables together.
Parameters Operand1

Operand2
Value or variable to be concatenated with Operand2.
Value or variable to be concatenated with Operand1.

Return Value String value resulting from concatenation of the two input values or variables.
Comments Both operands are converted to strings, if they are not strings already, before

they are concatenated.
Example 'Example of Concatenation

'InputA, InputB, and OutputA are edit controls.
OutputA = InputA & InputB
MsgBox ("InputA contains " & InputA)

Satellite Forms 8
Development Guide

316

_ [continue line]

/ [divide, float]

\ [divide, integer]

Line1_
Line2
The Underscore at the end of a line continues the line of code onto the next line.
Parameters Line1

Line2
Line of code.
Continuation of Line1.

Return Value None
Example 'Example of code spanning multiple lines

'InputA, InputB, OutputA, and
'OutputB are edit controls.
'Add on single line.
OutputA = InputA + InputB
'Add over multiple lines.
OutputB = InputA + _
InputB

Operand1 / Operand2
Divides one value or variable by another and returns a floating-point quotient.
Parameters Operand1

Operand2
Value or variable to be divided by Operand2.
Value or variable by which Operand1 is divided.

Return Value The floating-point quotient of the division of Operand1 by Operand2.
Comments Both operands are converted to floating point; the result is a floating-point

number.
The result is formatted to have the least number of decimal places necessary.
For example, if you divide 4.20 by 2.00, the result is 2.1. Use the
FormatNumber method to format the result to the desired number of decimal
places.

Example 'Example of floating-point division
'InputA, InputB, and OutputA are edit controls.
OutputA = InputA / InputB

See Also + [add], \ [divide, integer], , Mod, * [multiply], - [subtract]

Operand1 \ Operand2
Divides one value or variable by another and returns an integer quotient.
Parameters Operand1

Operand2
Value or variable to be divided by Operand2.
Value or variable by which Operand1 is divided.

Return Value The integer quotient of the division of Operand1 by Operand2.
Comments Both operands are converted to integers if they are not integers already.

Decimal places are truncated. The result is an integer. Use the Mod operator to
determine the remainder of integer division.

Example 'Example of integer division
'InputA, InputB, and OutputA are edit controls.
OutputA = InputA \ InputB
OutputB = InputA Mod InputB

See Also + [add], / [divide, float], , Mod, * [multiply], - [subtract]

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

317

= [equal]

> [greater than]

Operand1 = Operand2
Assigns a value to a variable or evaluates the equality of two values or variables.
Parameters Operand1

Operand2

Assignments: Variable to which the value Operand2 is assigned.
Evaluations: Value that is tested against Operand2.
Assignments: Value that is assigned to Operand1.
Evaluations: Value that is tested against Operand1.

Return Value None for assignments.
TRUE or FALSE for evaluations of equality.

Example 'Example of assignment and test of equality
'InputA, InputB, InputC, InputD, and OutputA
'are edit controls.
'Test of equality
If InputA = InputB Then

OutputA = "TRUE"
Else

OutputA = "FALSE"
EndIf
'Assignment
InputC = 3
InputD = "ABC"

See Also > [greater than], >= [greater than or equal], , < [less than], <= [less than or
equal], <> [not equal]

Operand1 > Operand2
Evaluates whether one value or variable is greater than another.
Parameters Operand1

Operand2
Value or variable to be evaluated against Operand2.
Value or variable to be evaluated against Operand1.

Return Value TRUE if Operand1 is greater than Operand2; FALSE if not.
Comments For numeric values, higher numbers are greater than lower numbers.

For string values, strings that are later alphabetically are greater than strings
that are earlier alphabetically.

Example 'Example of Greater Than comparison
'InputA, InputB, and OutputA are edit controls.
If Float(InputA) > Float(InputB) Then

OutputA = "TRUE"
Else

OutputA = "FALSE"
EndIf

See Also = [equal], >= [greater than or equal] , < [less than], <= [less than or equal], <>
[not equal]

Satellite Forms 8
Development Guide

318

>= [greater than or equal]

< [less than]

Operand1 >= Operand2
Evaluates whether one value or variable is greater than or equal to another.
Parameters Operand1

Operand2
Value or variable to be evaluated against Operand2.
Value or variable to be evaluated against Operand1.

Return Value TRUE if Operand1 is greater than or equal to Operand2; FALSE if not.
Comments For numeric values, higher numbers are greater than lower numbers.

For string values, strings that are later alphabetically are greater than strings
that are earlier alphabetically.

Example 'Example of Greater Than or Equal comparison
'InputA, InputB, and OutputA are edit controls.
If Float(InputA) >= Float(InputB) Then

OutputA = "TRUE"
Else

OutputA = "FALSE"
EndIf

See Also = [equal], > [greater than], < [less than], <= [less than or equal], <> [not equal]

Operand1 < Operand2
Evaluates whether one value or variable is less than another.
Parameters Operand1

Operand2
Value or variable to be evaluated against Operand2.
Value or variable to be evaluated against Operand1.

Return Value TRUE if Operand1 is less than Operand2; FALSE if not.
Comments For numeric values, lower numbers are less than higher numbers.

For string values, strings that are earlier alphabetically are less than strings
that are later alphabetically.

Example 'Example of Less Than comparison
'InputA, InputB, and OutputA are edit controls.
If Float(InputA) < Float(InputB) Then

OutputA = "TRUE"
Else

OutputA = "FALSE"
EndIf

See Also]= [equal], > [greater than], >= [greater than or equal], <= [less than or equal],
<> [not equal]

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

319

<= [less than or equal]

. [method, property]

Operand1 <= Operand2
Evaluates whether one value or variable is less than or equal to another.
Parameters Operand1

Operand2
Value or variable to be evaluated against Operand2.
Value or variable to be evaluated against Operand1.

Return Value TRUE if Operand1 is less than or equal to Operand2; FALSE if not.
Comments For numeric values, lower numbers are less than higher numbers.

For string values, strings that are earlier alphabetically are less than strings
that are later alphabetically.

Example 'Example of Less Than or Equal comparison
'InputA, InputB, and OutputA are edit controls.
If Float(InputA) <= Float(InputB) Then

OutputA = "TRUE"
Else

OutputA = "FALSE"
EndIf

See Also = [equal], > [greater than], >= [greater than or equal], < [less than], <> [not
equal]

Object.Method
Object.Property
Accesses an object’s properties or executes an object’s methods.
Parameter Object An object.
Return Value None
Example 'Example of using methods and accessing properties

'InputA, OutputA, OutputB, and OutputC are edit controls.
'Emps is a table.
'Use the Sum method of the table object.
OutputA = Tables("Emps").Sum("Salary")
'Access the Data property of the control.
InputA.
'Assign the result to the Data property of
'the control OutputB. Note that the Data property
'is default and can be omitted.
OutputB.Data = InputA.Data
OutputC = InputA

See Also Beep, Count, CurrentPage. Data, Delay, ExecAction, FormatNumber,
GetSysTime, Index. MoveCurrent, MoveFirst, MoveLast, MoveNext,
MovePrevious. MsgBox, Prompt, RecordValid, Show. Sum, Tone, Visible

Satellite Forms 8
Development Guide

320

<> [not equal]

* [multiply]

Operand1 <> Operand2
Evaluates whether one value or variable is not equal to another.
Parameters Operand1

Operand2
Value or variable to be evaluated against Operand2.
Value or variable to be evaluated against Operand1.

Return Value TRUE if Operand1 and Operand2 are not equal; FALSE if not.
Example 'Example of Not Equal comparison

'InputA, InputB, and OutputA are edit controls.
If InputA <> InputB Then

OutputA = "TRUE"
Else

OutputA = "FALSE"
EndIf

See Also = [equal], > [greater than], >= [greater than or equal], < [less than], <= [less
than or equal]

Operand1 * Operand2
Multiplies two values or variables.
Parameters Operand1

Operand2
Value or variable to multiply by Operand2.
Value or variable to multiply by Operand1.

Return Value The product of the multiplication of Operand1 and Operand2.
Comments If both operands are integers, the result is an integer.

If either operand is floating point, the result is floating point.
If either operand is a string, that operand is first converted to either an integer
or a floating point depending on its value. For example, the string “2” is
converted to an integer, while the string “2.4” is converted to floating point. The
operation then proceeds and the result is the same as described above.
If you are multiplying very large integers, ensure that the result of the
multiplication operation does not exceed the allowed range for integers
(-2147483648 to +2147483647). Use the Float conversion operator to
convert at least one of the operands to a floating-point number to ensure that
the answer is a floating-point number. The range for both positive and negative
floating-point numbers (2.2250738585072014E-308 to
1.7976931348623158E+308) is significantly larger than the range for integers.
For floating-point calculations, the result is formatted to have the least number
of decimal places necessary. For example, if you multiply 2.00 by 2.1, the
result is 4.2. You can use the FormatNumber method to format the result to
the desired number of decimal places.

Example 'Example of Multiplication
'InputA, InputB, and OutputA are edit controls.
OutputA = InputA * InputB

See Also + [add], / [divide, float], \ [divide, integer], Float, Mod, - [subtract]

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

321

- [subtract]

About

ABS

Operand1 – Operand2
Subtracts one value or variable from another.
Parameters Operand1

Operand2
Value or variable from which Operand2 is subtracted.
Value or variable which is subtracted from Operand1.

Return Value Difference of the two operands.
Comments If both operands are integers, the result is an integer.

If either operand is floating point, the result is floating point.
If either operand is a string, that operand is first converted to either an integer
or a floating point depending on its value. For example, the string “2” is
converted to an integer, while the string “2.4” is converted to floating point. The
operation then proceeds as before.
For floating-point calculations, the result is formatted to have the least number
of decimal places necessary. For example, if you subtract 2.00 from 4.1, the
result 2.1. Use the FormatNumber method to format the result to the desired
number of decimal places.

Example 'Example of Subtraction
'InputA, InputB, and OutputA are edit controls.
OutputA = InputA - InputB

See Also + [add], / [divide, float], \ [divide, integer], Mod, * [multiply]

[Control.]About()
Displays information about the extension in a dialog box.
Parameters None
Return Value None
Comments None
Example 'Example of Control About()

BarCode1.About()
‘Example of extension About()
About()

ABS(x)
Returns the absolute value of the specified number.
Parameter x The number for which to return the absolute value.
Return Value The absolute value of the specified number.
Comments Requires the Math extension.
Example 'Example of ABS(x)

Dim z
z = ABS(x)

Satellite Forms 8
Development Guide

322

ACOS

ACOSH

AddFilter

AfterAppStart

ACOS(x)
Calculates the arc cosine of the specified number.
Parameter x The number for which to calculate the arc cosine.
Return Value The arc cosine of the specified number.
Comments Applies only to the Math extension.
Example 'Example of ACOS(x)

Dim z
z = ACOS(x)

ACOSH(x)
Calculates the hyperbolic arc cosine of the specified number.
Parameter x The number for which to calculate the hyperbolic arc cosine.
Return Value The hyperbolic arc cosine of the specified number.
Comments Requires the Math extension.
Example 'Example of ACOSH(x)

Dim z
z = ACOSH(x)

Tables(TableName).AddFilter(ColumnName, Operator, Filtervalue)
Adds a filter in a table.
Parameter TableName Name of a table.

ColumnName Name of the column to add the filter condition to.
Operator The filter operator to add. Available operators are "=", "begin",

"<>", "<", ">", "<=", ">=", and "contain".
Filtervalue The value to filter the table with.

Return Value None
Comments AddFilter is a method of the Table object.
Example 'Example of AddFilter

'Emps is a table.
'Salary is a columns in the Emps table.
Tables("Emps").AddFilter("Salary", ">=", "1000")

See Also RemoveFilter, RemoveAllFilters

Occurs immediately after an application is launched, before the first form is displayed.
Comments AfterAppStart is an event of the Application object.

Use AfterAppStart to perform logic that executes only once when the
application starts up.
The AfterAppStart event is a great place to initialize global variables upon
the start of your application.

See Also BeforeAppEnd

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

323

AfterChange

AfterLoad

AfterOpen

AfterRecordCreate

Occurs immediately after data in any control on a form changes and when data from a form’s
table is loaded into the form’s controls.
Comments AfterChange is an event of the Form object.

Use AfterChange to perform logic that executes every time information in a
form changes.
AfterChange fires after the controls on a form are created and loaded with
data. AfterChange also fires if data changes in any control on a form.
Use AfterChange to display information that you are not storing in a table.
For example, you might have an edit field to display a calculated total based on
a stored price multiplied by a stored quantity. Using AfterChange calculates
this total when the form is initially loaded with data from its table and any time a
user changes the price or quantity.

See Also AfterLoad

Occurs immediately after a form is loaded with data, but before the AfterChange event is
triggered.
Comments AfterLoad is an event of the Form object.

Use AfterLoad to perform logic that executes every time the controls on a
form are loaded with data from the form’s linked table.
AfterLoad fires after the controls on a form are loaded with data.
AfterLoad does not fire if there is no linked table for the form. AfterLoad
also does not fire if there are no records in the form’s linked table that satisfy
the criteria of all active filters.

See Also Beep

Occurs immediately after a form opens, but before the form is loaded with data from a table.
Comments AfterOpen is an event of the Form object.

Use AfterOpen to perform logic that executes only one time for the form.
AfterOpen fires after a form’s controls are created (drawn), but before the
controls are loaded with data. AfterOpen only fires one time per form,
regardless of the number of pages in the form.
AfterOpen is useful for copying global variables into Edit controls to display
context information to the user.

See Also AfterLoad

Occurs immediately after a new record is created in the table linked to the current form.
Comments AfterRecordCreate is an event of the Form object.

Use AfterRecordCreate to perform logic that executes for all new records
that are created in the form.
AfterRecordCreate fires after the record is created, but before the user
enters any information in any of the controls.
Use AfterRecordCreate to initialize records with values.
A Jump to Form action that creates a record causes an
AfterRecordCreate event to fire in the target form.

Satellite Forms 8
Development Guide

324

And [bitwise]And [logical]

Asc

ASIN

Number1 And Number2
Performs a bitwise And operation between the arguments.
Parameters Number1

Number2
First operand.
Second operand.

Return Value The result of a bitwise And of the two operands.
Example 'Example of bitwise And

'InputA is an edit control.
If InputA And &H10 Then

MsgBox("Bit 4 (mask = 10 hex) of Input A is set")
Else

MsgBox("Bit 4 (mask = 10 hex) of Input A is clear")
EndIf

See Also Or [bitwise], Not [bitwise]

Condition1 And Condition2
Joins two conditions where both conditions must evaluate to TRUE for the expression to
evaluate to TRUE.
Parameters Condition1

Condition2
First condition to be evaluated.
Second condition to be evaluated.

Return Value TRUE if Condition1 evaluates to TRUE and Condition2 evaluates to TRUE;
FALSE if either condition evaluates to FALSE.

Comments Each condition is evaluated separately, then the And statement is performed.
Note that Xor, And, Or, and Not only perform Boolean operations if both
conditions are Boolean. Otherwise, they perform bitwise operations on their
operands.

Example 'Example of joining conditions with And
'InputA, InputB, and OutputA are edit controls.
If InputA > 10 And InputB > 10 Then

OutputA = "TRUE"
Else

OutputA = "FALSE"
EndIf

See Also Or [logical], Not [logical]

Asc(Character)
Returns the ASCII value of a character.
Parameter Character A string containing the character.
Return Value An integer corresponding to the ASCII code of the first character in the passed-

in string.
See Also Chr

ASIN(x)
Calculates the arc sine of the specified number.
Parameter x The number for which to calculate the arc sine.
Return Value The arc sine of the specified number.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

325

ASINH

ATAN

ATAN2

ATANH

Comments Requires the Math extension.
Example 'Example of ASIN(x)

Dim z
z = ASIN(x)

ASINH(x)
Calculates the hyperbolic arc sine of the specified number.
Parameter x The number for which to calculate the hyperbolic arc sine.
Return Value The hyperbolic arc sine of the specified number.
Comments Requires the Math extension.
Example 'Example of ASINH(x)

Dim z
z = ASINH(x)

ATAN(x)
Calculates the arc tangent of the specified number.
Parameter x The number for which to calculate the arc tangent.
Return Value The arc tangent of the specified number.
Comments Requires the Math extension.
Example 'Example of ATAN(x)

Dim z
z = ATAN(x)

ATAN(y, x)
Calculates the arc tangent of y/x.
Parameters x The denominator for which to calculate the arc tangent.

y The numerator for which to calculate the arc tangent.
Return Value The arc tangent of y/x.
Comments Requires the Math extension.
Example 'Example of ATAN2(y, x)

Dim z
z = ATAN(y, x)

ATANH(x)
Calculates the hyperbolic arc tangent of the specified number.
Parameter x The number for which to calculate the hyperbolic arc tangent.
Return Value The hyperbolic arc tangent of the specified number.
Comments Requires the Math extension.
Example 'Example of ATANH(x)

Dim z
z = ATANH(x)

Satellite Forms 8
Development Guide

326

Backup

Beep

BeepAfter

Tables(TableName).Backup(BackupPath)
Copies a table file to a backup folder.
Parameter TableName Name of the desired table.

BackupPath Path to the folder to copy the table file to.
Return Value TRUE is the backup was successful, FALSE if it failed.
Comments Backup is a method of the Table object. This function enables you to make a copy

of an application data table file to a specified backup folder. The purpose of this
function is to make it easier to protect against data loss by providing a simple way to
copy tables to a separate folder while the application is running. You should Commit
the table before using Backup. For the Palm OS platform, the backup location is the
specified folder on the first available memory card. For Windows Mobile, the backup
folder can be anywhere in the device’s filesystem. Do not include a trailing backslash
in the path. New in Satellite Forms 8.

Example 'Example of Backup method
'Back up employee table to \My Documents\Backup
Dim result
result = Tables("Emps").Backup("\My Documents\Backup")

See Also Search, BinarySearch

Beep(Type)
Issues a beep from the handheld device speaker.
Parameter Type Type of beep (a number).
Return Value None
Comments Beep is a method of the App object.

The Type parameter accepts the following values:
1 = Information
2 = Warning
3 = Error
4 = Startup
5 = Alarm
6 = Confirmation
7 = Click
The handheld device beeps for Information, Warnings, Errors, and
Confirmation are the same.

Example 'Example of Beep
Beep(5)

See Also Tone

Extension.BeepAfter(str)
Beeps when the scan is complete.
Parameter Str “On” or “Off”
Return Value Always TRUE for the Symbol Integrated Scanner extension. None for the Bar

Code Reader extension.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

327

BeforeAppEnd

BeforeClose

BeforeRecordDelete

BI_GetBatteryPercent

Comments Applies only to the Bar Code Reader and Symbol Integrated Scanner
extensions.

Example 'Example of BeepAfter(str)
BarCode1.BeepAfter("On")

Occurs immediately prior to the application closing.
Comments BeforeAppEnd is an event of the Application object.

Use BeforeAppEnd to perform logic that executes when the application is
closing.
If you Fail the BeforeAppEnd event, the application will not close. You can
prevent unwanted exits from your application using this approach.

See Also AfterAppStart

Occurs immediately before a form closes, but after the form is validated.
Comments BeforeClose is an event of the Form object.

Use BeforeClose to perform logic that executes one time before the form
closes. Forms close when a jump to another form occurs or the application
closes.
When a form closes, first OnValidate fires and then BeforeClose fires. If
OnValidate fails, BeforeClose never fires and the form is not exited.
BeforeClose only fires one time per form, regardless of the number of
pages in the form.
Use BeforeClose to perform operations on data after the data has been
validated.
Caution: Avoid setting the values of field objects and control objects during
the BeforeClose event. Any data changes you make are not validated,
creating the possibility of storing invalid data.

See Also AfterOpen, OnValidate

Occurs immediately after a user attempts to delete a record, but before the record is deleted.
Comments BeforeRecordDelete is an event of the Form object.

Use BeforeRecordDelete to perform logic that executes before a record is
deleted.
BeforeRecordDelete fires before a record is deleted from a form. If the
script associated with BeforeRecordDelete fails – exits using the FAIL
keyword the – record is not deleted.
Use BeforeRecordDelete to manage record deletion. For example, you
can prevent the deletion of a master record, such as an order, if detail records,
such as order lines, exist. A BeforeRecordDelete script could look for
data in the detail table and fail if it finds records, informing the user to delete
the detail records first.

See Also AfterRecordCreate

BI_GetBatteryPercent
Returns current battery charge level as a percentage (0-100) of full.

Satellite Forms 8
Development Guide

328

BI_GetPluggedIn

BinarySearch

Bool

Parameter None
Return Value Returns current battery charge level as a percentage (0-100) of full.
Comments BI_GetBatteryPercent requires the Battery Info extension.
Example 'Example of BI_GetBatteryInfo function

'edBattLevel is an edit control
edBattLevel = BI_GetBatteryPercent

See Also BI_GetPluggedIn

BI_GetPluggedIn
Returns 1 (true) if AC power is currently connected or 0 (false) if not.
Parameter None
Return Value Returns AC power connection status.
Comments BI_GetBatteryPercent requires the Battery Info extension.
Example 'Example of BI_GetPluggedIn function

'edACPower is an edit control
edACPower = Bool(BI_GetPluggedIn)

See Also BI_GetBatteryPercent

Tables(TableName).BinarySearch(ColumnName, Direction, SearchValue, RowNum)
Finds an item in a sorted table.
Parameter TableName Name of the desired table.

ColumnName Name of the column to search.
Direction Sort order. TRUE for ascending; FALSE for descending.
SearchValue The value to search for.
RowNum If found, the zero-based row number of SearchValue.

Return Value TRUE if the method finds SearchValue; FALSE if it does not find SearchValue.
Comments BinarySearch is a method of the Table object. If the item specified by

SearchValue is found, the fourth parameter, RowNum, indicates the row
number of the item. If the SearchValue is NOT found, RowNum indicates the
row number the item would be found at if it existed, also known as the Sort
Position. The sort position of an unfound item can be used to move a new item
into the correct sorted row without having to re-sort the table (see the
KnowledgeBase for more details and sample script code).

Example 'Example of BinarySearch method
'Search table for a specific employee.
Dim RowNum, fFound

fFound = Tables("Emps").BinarySearch("Name", True,_
"John Smith", RowNum)

See Also Lookup, Search, InsertionSort, QuickSort

Bool(Variable)
Converts a variable into a Boolean value.
Parameter Variable A variable.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

329

BV_Bitsize

BV_ColorTableSize

BV_Compress

BV_Create

Return Value TRUE if the variable is non-zero; FALSE if the variable is zero
See Also Float, Int, Str

BV_Bitsize()
Returns the current bitmap's size.
Parameters None
Return Value The current bitmap's size.
Comments Applies only to the Bitmap extension.
Example 'Example of BV_Bitsize()

Dim x
x = BV_Bitsize()

BV_ColorTableSize()
Returns the current bitmap's color table size.
Parameters None
Return Value The current bitmap's color table size.
Comments Applies only to the Bitmap extension.
Example 'Example of BV_ColorTableSize()

Dim x
x = BV_ColorTableSize()

BV_Compress()
Compresses the bitmap.
Parameters None
Return Value None
Comments Applies only to the Bitmap extension.
Example 'Example of BV_Compress()

BV_Compress()

BV_Create(width, height, BitDepth, UseColorTable)
Creates a bitmap structure.
Parameters width Width of the new bitmap in pixels.

height Height of the new bitmap in pixels.
BitDepth Color depth of the new bitmap; must be either 1, 2, 4, or 8.
UseColorTable

Return Value TRUE if successful; FALSE if the method fails to create the bitmap.
Comments Applies only to the Bitmap extension.
Example 'Example of BV_Create(width, height, BitDepth, UseColorTable)

Dim bCreated
bCreated = BV_Create(26, 40, 8, FALSE)

Satellite Forms 8
Development Guide

330

BV_CreateBitmapWindow

BV_DeleteWindow

BV_DrawBitmap

BV_GetBits

BV_GetColorTable

BV_CreateBitmapWindow()
Creates an offscreen bitmap window.
Parameters None
Return Value TRUE if successful; FALSE if the method fails to create the bitmap window.
Comments Applies only to the Bitmap extension.
Example 'Example of BV_CreateBitmapWindow()

Dim bCreated
bCreated = BV_CreateBitmapWindow()

See Also BV_DeleteWindow

BV_DeleteWindow()
Deletes the offscreen bitmap window and sets the current drawing window to the previous
drawing window.
Parameters None
Return Value None
Comments Applies only to the Bitmap extension.
Example 'Example of BV_DeleteWindow()

BV_DeleteWindow()

See Also BV_CreateBitmapWindow

BV_DrawBitmap(X_Coord, Y_Coord)
Draws the current bitmap to the screen at the position specified.
Parameters X_Coord X-origin of the bitmap in pixels.

Y_Coord Y-origin of the bitmap in pixels.
Return Value None
Comments Applies only to the Bitmap extension.
Example 'Example of BV_DrawBitmap(X_Coord, Y_Coord)

BV_DrawBitmap(10, 10)

See Also BV_PaintBitmap

BV_GetBits()
Returns the bitmap's data.
Parameters None
Return Value The bitmap's data.
Comments Applies only to the Bitmap extension.
Example 'Example of BV_GetBits()

Dim BitmapData
BitmapData = BV_GetBits()

BV_GetColorTable()
Returns the bitmap's color table data.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

331

BV_GetResPointer

BV_GetWinBitmap

BV_ISROM35

BV_ModifyBitmapValue

Parameters None
Return Value The bitmap's color table data.
Comments Applies only to the Bitmap extension.
Example 'Example of BV_GetColorTable()

Dim BitmapData
BitmapData = BV_GetColorTable()

BV_GetResPointer()
Passes the currently open resource's pointer to Bitmap Viewer.
Parameters None
Return Value None
Comments Applies only to the Bitmap extension.
Example 'Example of BV_GetResPointer()

BV_GetWinBitmap()
Returns the current drawing window as a bitmap.
Parameters None
Return Value The bitmap in the current drawing window.
Comments Applies only to the Bitmap extension.
Example 'Example of BV_GetWinBitmap()

Bitmap2 = BV_GetWinBitmap()

BV_ISROM35()
Checks to see if the current handheld has Palm OS 3.5 or greater.
Parameters None
Return Value TRUE if the handheld has Palm OS 3.5 or greater; FALSE if not.
Comments Applies only to the Bitmap extension.
Example 'Example of BV_ISROM35()

Dim bIsROM35
bIsROM35 = BV_ISROM35()

BV_ModifyBitmapValue(BitmapValue,)
Changes the corresponding bitmap value and returns the previous value.
Parameters BitmapValue

Return Value None
Comments Applies only to the Bitmap extension. Be very careful when modifying the

bitmap values as entering an improper value may crash the application.
Example 'Example of BV_ModifyBitmapValue(BitmapValue, ???)

PrevValue = BV_ModifyBitmapValue(BitmapValue, 29)

Satellite Forms 8
Development Guide

332

BV_PaintBitmap

BV_ReleaseBitmap

BV_ReturnBitmapValue

BV_SetWindowBounds

BV_PaintBitmap(X_Coord, Y_Coord)
Draws the current bitmap to the screen at the position specified.
Parameters X_Coord X-origin of the bitmap in pixels.

Y_Coord Y-origin of the bitmap in pixels.
Return Value None
Comments Applies only to the Bitmap extension. Use this function if the bitmap has its own

color table.
Example 'Example of BV_PaintBitmap(X_Coord, Y_Coord)

BV_PaintBitmap(10, 10)

See Also BV_DrawBitmap

BV_ReleaseBitmap()
Releases the current bitmap's pointer.
Parameters None
Return Value None
Comments Applies only to the Bitmap extension.
Example 'Example of BV_ReleaseBitmap()

BV_ReleaseBitmap()

BV_ReturnBitmapValue(BitmapValue)
Returns the corresponding bitmap value.
Parameter BitmapValue
Return Value None
Comments Applies only to the Bitmap extension.
Example 'Example of BV_ReturnBitmapValue(BitmapValue)

Value = BV_ReturnBitmapValue(BVal)

 BV_SetWindowBounds(TopLeftX, TopLeftY, HorExtent, VerExtent)
Sets the offscreen window's bounds.
Parameters TopLeftX X-origin of the offscreen window in pixels.

TopLeftY Y-origin of the offscreen window in pixels.
HorExtent Width of the offscreen window in pixels.
VerExtent Height of the offscreen window in pixels.

Return Value None.
Comments Applies only to the Bitmap extension.
Example 'Example of BV_SetWindowBounds(TopLeftX, TopLeftY, HorExtent,

VerExtent)
BV_SetWindowBounds(10, 10, 40, 80)

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

333

BV_SIZE

BV_WinSetDrawWindow

CalcTextWidth

CameraCapture

BV_SIZE()
Returns the size of the bitmap.
Parameters None
Return Value None
Comments Applies only to the Bitmap extension.
Example 'Example of BV_SIZE()

Dim x
x = BV_SIZE()

BV_WinSetDrawWindow()
Sets the offscreen window as the current drawing window.
Parameters None
Return Value None
Comments Applies only to the Bitmap extension.
Example 'Example of BV_WinSetDrawWindow()

BV_WinSetDrawWindow()

CalcTextWidth(string)
Returns the width in of pixels that a given string requires, using the current font.
Parameter String Text string to calculate width of.
Return Value Width in pixels that String requires, using the current font.
Comments Requires the Color Graphics extension.
Example 'Example of CalcTextWidth function

width = CalcTextWidth("Sample Text")

CameraCapture(strPath, strFilename, strWindowTitle, quality, videotype, width, height,
videotimelimit, capturemode)
[Windows Mobile 5 or higher Pocket PC only.] Capture photo or video from camera.
Parameter strPath Path of folder to save photo/video file into, ending with “\”.

strFilename Name of photo or video file including proper suffix (.JPG).
strWindowTitle Title of camera capture window.
quality Photo quality. 0 = Default, 1 = Low, 2 = Normal, 3 = High.
videotype Video type. 1 = Standard, 2 = Messaging, 0 = All.
width Pixel width of image or video.
height Pixel height of image or video.
videotimelimit Max time in seconds of video to capture.
capturemode Capture mode. 0 = Photo, 1 = Video only, 2 = Video + Audio.

Return Value Result code of 0 for success (no error), 1 indicates user canceled the capture, -
2147024882 indicates insufficient memory to save the photo/video, -
2147024809 indicates an invalid argument was supplied.

Comments Requires the WM5Camera extension.
Example See the WM5Camera sample project.

Satellite Forms 8
Development Guide

334

CanClose

Caption

CBRT

Chr

Forms(FormName).CanClose
Returns or sets the CanClose property of a form.
Paramete FormName Name of a form.
Return Value True if the X/OK button is visible on this form, False if it is not visible, when

used to access the property, or none when used to set the property.
Comments CanClose is a property of the Form object, and is applicable to the Pocket

PC platform only. This feature is ignored for Palm. Set this property False to
hide the X/OK button.

Example 'Example of a CanClose property
If Forms().CanClose = True then

MsgBox("The X/OK button is visible.")
Else

MsgBox("Let’s hide the X/OK button.")
‘set the X/OK button hidden
Forms().CanClose = False

EndIf

Control(ControlName).Caption
Returns or sets the text label associated with a control.
Paramete ControlName Name of a control.
Return Value String containing the caption of the specified control, if used to access the

caption, or none if used to set the caption.
Comments Caption is a property of the Control object. Use to change the Text

property of Title, Text, Check Box, Radio Button, and Button controls.
Example 'Example of a Caption property

'OutputA is an edit control.
'Checkbox1 is a check box.
OutputA = InputA.Caption
CheckBox1.Caption = "New Caption"

CBRT(x)
Calculates the cube root of the specified number.
Parameter x The number for which to calculate the cube root.
Return Value The cube root of the specified number.
Comments Requires the Math extension.
Example 'Example of CBRT(x)

Dim z
z = CBRT(3)

Chr(ASCII_Value)
Returns the character associated with an ASCII value.
Parameter ASCII_Value An ASCII value.
Return Value Returns a string containing the character represented by the specified ASCII

value.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

335

ClosePort

CM_Connect

Comments Chr is generally used to specify characters that cannot be entered with the
keyboard, such as a new line character in a string, as shown in the following
example:

Example 'Print a 2-line message
MsgBox("Line 1" & Chr(10) & "Line 2")

See Also Asc

ClosePort()
Closes the serial port, which saves battery power.
Parameters None
Return Value None
Comments Requires the Printer extension.
Example 'Example of ClosePort()

ClosePort()

See Also OpenPort

CM_Connect(strURL, timeout)
Connect to the internet, using the specified URL to determine the best connection method.
Parameters strURL URL to use for determining best connection method.

timeout Time in milliseconds to wait before giving up on connection.
Return Value Returns a numeric value indicating the status of the connection request.
Comments Requires the ConnectionMgr extension for Windows Mobile (not supported by

the Windows CE OS). Result codes include:
-1 = Connection Manager Not Supported on Device
0 = CONNMGR_STATUS_UNKNOWN
16 = CONNMGR_STATUS_CONNECTED
32 = CONNMGR_STATUS_DISCONNECTED
33 = CONNMGR_STATUS_CONNECTIONFAILED
34 = CONNMGR_STATUS_CONNECTIONCANCELED
35 = CONNMGR_STATUS_CONNECTIONDISABLED
36 = CONNMGR_STATUS_NOPATHTODESTINATION
37 = CONNMGR_STATUS_WAITINGFORPATH
38 = CONNMGR_STATUS_WAITINGFORPHONE
64 = CONNMGR_STATUS_WAITINGCONNECTION
65 = CONNMGR_STATUS_WAITINGFORRESOURCE
66 = CONNMGR_STATUS_WAITINGFORNETWORK
128 = CONNMGR_STATUS_WAITINGDISCONNECTION
129 = CONNMGR_STATUS_WAITINGCONNECTIONABORT

Example 'Example of CM_Connect
edResult = CM_Connect(edURL, edTimeout)

See Also CM_ConnectByIndex, CM_Disconnect, CM_GetConnectionName,
CM_HasConnectionMgr

Satellite Forms 8
Development Guide

336

CM_ConnectByIndex

CM_Disconnect

CM_ConnectByIndex(index, timeout)
Connect to the internet using the specified connection method.
Parameters index Index of the desired connection method, retrieved via the

CM_GetConnectionName function.
timeout Time in milliseconds to wait before giving up on connection.

Return Value Returns a numeric value indicating the status of the connection request.
Comments Requires the ConnectionMgr extension for Windows Mobile (not supported by

the Windows CE OS). Result codes include:
-1 = Connection Manager Not Supported on Device
0 = CONNMGR_STATUS_UNKNOWN
16 = CONNMGR_STATUS_CONNECTED
32 = CONNMGR_STATUS_DISCONNECTED
33 = CONNMGR_STATUS_CONNECTIONFAILED
34 = CONNMGR_STATUS_CONNECTIONCANCELED
35 = CONNMGR_STATUS_CONNECTIONDISABLED
36 = CONNMGR_STATUS_NOPATHTODESTINATION
37 = CONNMGR_STATUS_WAITINGFORPATH
38 = CONNMGR_STATUS_WAITINGFORPHONE
64 = CONNMGR_STATUS_WAITINGCONNECTION
65 = CONNMGR_STATUS_WAITINGFORRESOURCE
66 = CONNMGR_STATUS_WAITINGFORNETWORK
128 = CONNMGR_STATUS_WAITINGDISCONNECTION
129 = CONNMGR_STATUS_WAITINGCONNECTIONABORT

Example 'Example of CM_ConnectByIndex
edResult = CM_ConnectByIndex(edConnIndex, edTimeout)

See Also CM_Connect, CM_Disconnect, CM_GetConnectionName,
CM_HasConnectionMgr

CM_Disonnect()
Inform the OS that we're done with the current connection and it may now be disconnected.
Parameters None
Return Value Returns a numeric value indicating the status of the disconnection request.
Comments Requires the ConnectionMgr extension for Windows Mobile (not supported by

the Windows CE OS). The Windows Mobile OS may not close the connection if
it is in use by other clients/services. A result code of 0 indicates the
disconnection request was successful (although the connection may not have
been closed by the OS). A result code of -1 indicates that there was not an
active connection started with CM_Connect or CM_ConnectByIndex to
disconnect.

Example 'Example of CM_Disconnect
edResult = CM_Disconnect()

See Also CM_Connect, CM_ConnectByIndex, CM_GetConnectionName,
CM_HasConnectionMgr

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

337

CM_GetConnectionName

CM_HasConnectionMgr

Colorize

CM_GetConnectionName(index)
Obtain the name of a connection method, specified by index.
Parameters Index Index number of the connection method to retrieve the name of.
Return Value Returns the connection name for the specified connection index.
Comments Requires the ConnectionMgr extension for Windows Mobile (not supported by

the Windows CE OS). Use this function to obtain a list of all the connection
methods available on the device. Start by passing an index of 0, and repeat
calling the function with an increased index number until the returned string is
blank. Use the connection index number to specify a desired connection with
the CM_ConnectByIndex function.

Example 'Example of CM_GetConnectionName
‘list all connections in the edConnName paragraph control
dim connidx, connname, done
connidx = 0
done = false
while not done

connname = CM_GetConnectionName(connidx)
if connname = "" then

done = true
else

edConnName = edConnName &connidx &" - " &connname
&chr(10)

connidx = connidx + 1
endif

wend

See Also CM_Connect, CM_ConnectByIndex, CM_Disconnect, CM_HasConnectionMgr

CM_HasConnectionMgr()
Return whether the device has the ConnectionMgr system API library, to know if we can use
ConnectionMgr functions or not.
Parameters None
Return Value Return True if device has ConnectionMgr library, or False if device does not

have ConnectionMgr.
Comments Requires the ConnectionMgr extension for Windows Mobile (not supported by

the Windows CE OS). Many WinCE devices do not have the ConnectionMgr
library and so the functions cannot be used on those devices. This function
allows you to determine at runtime if you can call the ConnectionMgr functions
on the current device or not. Call this function before attempting to use any
other ConnectionMgr functions.

Example 'Example of CM_HasConnectionMgr
edResult = "Device Has CM: " &Bool(CM_HasConnectionMgr)

See Also CM_Connect, CM_ConnectByIndex, CM_Disconnect,
CM_GetConnectionName

Colorize(enable)
Set True to use color controls with the colors you have defined, or False to use standard
system colors.

Satellite Forms 8
Development Guide

338

ColorizeButton

ColorizeCheckbox

Parameters enable True to enable custom colors or False to use system colors.
Return Value None
Comments Requires the Colorizer extension. Windows Mobile platform only (ignored on

Palm OS platform). On the Windows Mobile platform, color changes take effect
after the Colorize(true) method is called. To use the standard system color
scheme, call Colorize(false).

Example 'Enable custom colors
Colorize(true)

See Also

ColorizeButton(forecolor, backcolor)
Set Button controls foreground and background colors.
Parameters forecolor Button control foreground color as hexadecimal RGB value

using &Hbbggrr format.
backcolor Button control background color as hexadecimal RGB value

using &Hbbggrr format.
Return Value None
Comments Requires the Colorizer extension. This method sets the foreground &

background colors of all button controls. On Palm OS, the button foreground
color set here is also used for the foreground color of the checkbox, radio,
droplist, and text controls, and the background color is also used for listbox
controls and popped up droplists. The color is specified as an RGB value in
hexadecimal format, as &Hbbggrr, where bb is the blue level, gg is the green
level, and rr is the red level. On the Windows Mobile platform, color changes
take effect after the Colorize(true) method is called.

Example 'Example of ColorizeButton
ColorizeButton(&HFF0000, &H00FFFF)

See Also

ColorizeCheckbox(forecolor, backcolor)
Set Checkbox controls foreground and background colors.
Parameters forecolor Checkbox control foreground color as hexadecimal RGB value

using &Hbbggrr format.
backcolor Checkbox control background color as hexadecimal RGB value

using &Hbbggrr format.
Return Value None
Comments Requires the Colorizer extension. This method sets the foreground &

background colors of all Checkbox controls. On Palm OS, the Checkbox
foreground color set here is also used for the foreground color of the button,
radio, droplist, and text controls, and the background color is also used for
listbox controls and popped up droplists. The color is specified as an RGB
value in hexadecimal format, as &Hbbggrr, where bb is the blue level, gg is the
green level, and rr is the red level. On the Windows Mobile platform, color
changes take effect after the Colorize(true) method is called.

Example 'Example of ColorizeCheckbox
ColorizeCheckbox(&HFF0000, &H00FFFF)

See Also

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

339

ColorizeDroplist

ColorizeEdit

ColorizeExtra

ColorizeDroplist(forecolor, backcolor)
Set Droplist controls foreground and background colors.
Parameters forecolor Droplist control foreground color as hexadecimal RGB value

using &Hbbggrr format.
backcolor Droplist control background color as hexadecimal RGB value

using &Hbbggrr format.
Return Value None
Comments Requires the Colorizer extension. This method sets the foreground &

background colors of all Droplist controls. On Palm OS, the Droplist foreground
color set here is also used for the foreground color of the button, checkbox,
radio, and text controls, and the background color is also used for listbox
controls. The color is specified as an RGB value in hexadecimal format, as
&Hbbggrr, where bb is the blue level, gg is the green level, and rr is the red
level. On the Windows Mobile platform, color changes take effect after the
Colorize(true) method is called.

Example 'Example of ColorizeDroplist
ColorizeDroplist(&HFF0000, &H00FFFF)

See Also

ColorizeEdit(forecolor, backcolor)
Set Edit controls foreground and background colors.
Parameters forecolor Edit control foreground color as hexadecimal RGB value using

&Hbbggrr format.
backcolor Edit control background color as hexadecimal RGB value using

&Hbbggrr format.
Return Value None
Comments Requires the Colorizer extension. This method sets the foreground &

background colors of all Edit controls. On Palm OS, the edit control foreground
color set here is also used for the foreground color of paragraph controls. The
background color is ignored on Palm OS, as it uses the form’s background
color for edit & paragraph controls. The color is specified as an RGB value in
hexadecimal format, as &Hbbggrr, where bb is the blue level, gg is the green
level, and rr is the red level. On the Windows Mobile platform, color changes
take effect after the Colorize(true) method is called.

Example 'Example of ColorizeEdit
ColorizeEdit(&HFF0000, &H00FF00)

See Also

ColorizeExtra(UIcolortype, color)
Set extra Palm OS UI colors not handled in any other Colorizer functions.
Parameters UIcolortype The index of the UI element to set the color of.

color The color of that UI element as a hexadecimal RGB value using
&Hbbggrr format.

Return Value None

Satellite Forms 8
Development Guide

340

ColorizeForm

ColorizeInk

ColorizeListbox

Comments Requires the Colorizer extension. Palm OS platform only. This method sets the
color of any UI element, as per the list of elements defined in the Palm OS.
This method can be used to set control and form colors, and also element
colors that are not settable using the other Colorizer functions. The color is
specified as an RGB value in hexadecimal format, as &Hbbggrr, where bb is
the blue level, gg is the green level, and rr is the red level. Refer to the list of
Palm OS UI elements.

Example 'Example of ColorizeExtra
'Set color of menu text
ColorizeExtraColor(7, &H00FF00)

See Also

ColorizeForm(backcolor)
Set Form background color.
Parameters backcolor Form foreground color as hexadecimal RGB value using

&Hbbggrr format.
Return Value None
Comments Requires the Colorizer extension. This method sets the background color of all

forms. On Palm OS, the form background color set here is also used for the
background color of checkbox, radio, and text controls. The color is specified
as an RGB value in hexadecimal format, as &Hbbggrr, where bb is the blue
level, gg is the green level, and rr is the red level. On the Windows Mobile
platform, color changes take effect after the Colorize(true) method is called.

Example 'Example of ColorizeForm
ColorizeForm(&HFF0000)

See Also

ColorizeInk(forecolor, backcolor)
Set Ink controls foreground and background colors.
Parameters forecolor Ink control foreground color as hexadecimal RGB value using

&Hbbggrr format.
backcolor Ink control background color as hexadecimal RGB value using

&Hbbggrr format.
Return Value None
Comments Requires the Colorizer extension. This method sets the foreground &

background colors of ink controls. The color is specified as an RGB value in
hexadecimal format, as &Hbbggrr, where bb is the blue level, gg is the green
level, and rr is the red level. On the Windows Mobile platform, color changes
take effect after the Colorize(true) method is called.

Example 'Example of ColorizeInk
ColorizeInk(&HFF0000, &H00FFFF)

See Also

ColorizeListbox(forecolor, backcolor)
Set Listbox controls foreground and background colors.
Parameters forecolor Listbox control foreground color as hexadecimal RGB value

using &Hbbggrr format.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

341

ColorizeLookup

ColorizeParagraph

backcolor Listbox control background color as hexadecimal RGB value
using &Hbbggrr format.

Return Value None
Comments Requires the Colorizer extension. This method sets the foreground &

background colors of Listbox controls. On Palm OS, the foreground color set
here is also used for the foreground color of the checkbox, radio, and text
controls, and the background color is also used for popped up droplists. The
color is specified as an RGB value in hexadecimal format, as &Hbbggrr, where
bb is the blue level, gg is the green level, and rr is the red level. On the
Windows Mobile platform, color changes take effect after the Colorize(true)
method is called.

Example 'Example of ColorizeListbox
ColorizeListbox(&HFF0000, &H00FFFF)

See Also

ColorizeLookup(forecolor, backcolor)
Set Lookup controls foreground and background colors.
Parameters forecolor Lookup control foreground color as hexadecimal RGB value

using &Hbbggrr format.
backcolor Lookup control background color as hexadecimal RGB value

using &Hbbggrr format.
Return Value None
Comments Requires the Colorizer extension. This method sets the foreground &

background colors of Lookup controls. On Palm OS, the foreground color set
here is also used for the foreground color of the checkbox, radio, and text
controls, and the background color is also used for listbox controls and popped
up droplists. The color is specified as an RGB value in hexadecimal format, as
&Hbbggrr, where bb is the blue level, gg is the green level, and rr is the red
level. On the Windows Mobile platform, color changes take effect after the
Colorize(true) method is called.

Example 'Example of ColorizeLookup
ColorizeLookup(&HFF0000, &H00FFFF)

See Also

ColorizeParagraph(forecolor, backcolor)
Set Paragraph controls foreground and background colors.
Parameters forecolor Paragraph control foreground color as hexadecimal RGB value

using &Hbbggrr format.
backcolor Paragraph control background color as hexadecimal RGB value

using &Hbbggrr format.
Return Value None
Comments Requires the Colorizer extension. This method sets the foreground &

background colors of Paragraph controls. On Palm OS, this function also
affects edit controls. The color is specified as an RGB value in hexadecimal
format, as &Hbbggrr, where bb is the blue level, gg is the green level, and rr is
the red level. On the Windows Mobile platform, color changes take effect after
the Colorize(true) method is called.

Satellite Forms 8
Development Guide

342

ColorizeRadio

ColorizeText

CommitData

Example 'Example of ColorizeParagraph
ColorizeParagraph(&HFF0000, &H00FFFF)

See Also

ColorizeRadio(forecolor, backcolor)
Set Radio controls foreground and background colors.
Parameters forecolor Radio control foreground color as hexadecimal RGB value using

&Hbbggrr format.
backcolor Radio control background color as hexadecimal RGB value

using &Hbbggrr format.
Return Value None
Comments Requires the Colorizer extension. This method sets the foreground &

background colors of Radio button controls. On Palm OS, the foreground color
set here is also used for the foreground color of the checkbox, button, and text
controls, and the background color is also used for listbox controls and popped
up droplists. The color is specified as an RGB value in hexadecimal format, as
&Hbbggrr, where bb is the blue level, gg is the green level, and rr is the red
level. On the Windows Mobile platform, color changes take effect after the
Colorize(true) method is called.

Example 'Example of ColorizeRadio
ColorizeRadio(&HFF0000, &H00FFFF)

See Also

ColorizeText(forecolor, backcolor)
Set Text controls foreground and background colors.
Parameters forecolor Text control foreground color as hexadecimal RGB value using

&Hbbggrr format.
backcolor Text control background color as hexadecimal RGB value using

&Hbbggrr format.
Return Value None
Comments Requires the Colorizer extension. This method sets the foreground &

background colors of Text controls. On Palm OS, the foreground color set here
is also used for the foreground color of the checkbox, radio, and button
controls, and the background color is also used for listbox controls and popped
up droplists. The color is specified as an RGB value in hexadecimal format, as
&Hbbggrr, where bb is the blue level, gg is the green level, and rr is the red
level. On the Windows Mobile platform, color changes take effect after the
Colorize(true) method is called.

Example 'Example of ColorizeText
ColorizeText(&HFF0000, &H00FFFF)

See Also

Tables(TableName).CommitData
Commits (saves) the cached table to storage immediately.
Parameter TableName Name of a table.
Return Value None

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

343

COPYSIGN

COS

COSH

Comments CommitData is a method of the Table object. Use CommitData to commit
the cached table data to storage immediately.
Table data is cached when it is in use, and committed to storage automatically
when the application closes. If the device is reset or power is lost before the
application is closed, modified data in the cache is not written to storage, and is
therefore lost when the device restarts. The CommitData method enables
you to commit cached table data to storage immediately, in order to protect
against data loss from a device reset.
Note that the CommitData method is NOT affected by active filters. All
records in a table will be committed regardless of whether they are currently
filtered out of view.

Example 'Example of CommitData method.
'Emps is a table.
'Add new employee and commit table to storage.
Tables("Emps").CreateRecord
Tables("Emps").MoveLast
Tables("Emps").Fields("Fname") = "Joe"
Tables("Emps").Fields("Lname") = "User"
Tables("Emps").CommitData

See Also CreateRecord, DeleteRecord, MoveCurrent, MoveFirst, MoveLast,
MovePrevious, RecordValid

COPYSIGN(x, y)
Returns x with the sign of y.
Parameters x The number receiving the sign from y.

y The number from which to copy the sign.
Return Value x with the sign of y.
Comments Requires the Math extension.
Example 'Example of COPYSIGN(x, y)

COPYSIGN(x, y)

COS(x)
Calculates the cosine of the specified number.
Parameter x The number for which to calculate the cosine.
Return Value The cosine of the specified number.
Comments Requires the Math extension.
Example 'Example of COS(x)

Dim z
z = COS(x)

COSH(x)
Calculates the hyperbolic cosine of the specified number.
Parameter x The number for which to calculate the hyperbolic cosine.
Return Value The hyperbolic cosine of the specified number.

Satellite Forms 8
Development Guide

344

Count

CreateRecord

Comments Requires the Math extension.
Example 'Example of COSH(x)

Dim z
z = COSH(x)

Object.Count
Returns the number of child objects in an object collection.
Parameters None
Return Value Number of child objects in the specified object collection.
Comments Count is a read-only property of the Controls collection, the Extensions

collection, the Fields collection, the Forms collection, the Table object,
and the Tables collection.
Use Count to determine the number of controls in a form, the number of
columns in a table, the number of forms in an application, the number of
records in a table, or the number of tables in an application.
Note that the Count property of the Tables collection returns the number of
tables in the application. The Count property of the Table object returns the
number of records in the table.

Example 'Example of Count property
'OutputA through OutputE are edit controls.
'Emps is a table.
'Number of forms in current application
OutputB = Forms.Count
'Number of controls in current form
OutputA = Controls.Count
'Number of tables in current application
OutputC = Tables.Count
'Number of fields in current table
OutputD = Tables().Fields.Count
'Number of records in current table
OutputE = Tables().Count

See Also Sum

Tables(TableName).CreateRecord
Creates a record in a table.
Parameter TableName Name of a table.
Return Value None
Comments CreateRecord is a method of the Table object. This method does not

prompt the user to confirm the record creation.
Example 'Example of CreateRecord

'Emps is a table.
'Empno, Name, and Salary are columns in the
'Emps table.
Tables("Emps").CreateRecord
Tables("Emps").MoveLast
Tables("Emps").Fields("Empno") = "150"
Tables("Emps").Fields("Name") = "Smith"
Tables("Emps").Fields("Salary") = "1000"

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

345

CtrlAdv

CurrentPage

CurrentRecord

Data

Extension.CtrlAdv(str)
Turns the CTRLADV property on or off.
Parameter Str “On” or “Off”
Return Value None
Comments Applies only to the Bar Code Reader and Symbol Integrated Scanner

extensions.
Example 'Example of CtrlAdv(str)

BarCode1.CtrlAdv("On")

Object.CurrentPage
Returns the zero-based number of the current page on a form.
Parameter Object An object.
Return Value Zero-based number of current page.
Comments CurrentPage is a property of the Form object. Zero-based numbering

means that the first page is page zero.
Example 'Example of CurrentPage property

'OutputA is an edit control
'on the first page.
'Output2A is an edit control
'on the second page.
If Forms().CurrentPage = 0 Then

OutputA = "First Page"
ElseIf Forms().CurrentPage = 1 Then

Output2A = "Second Page"
EndIf

Forms(FormName).CurrentRecord
Returns the zero-based number of the current record of a form.
Parameter FormName Name of a form.
Return Value Zero-based number of the current record of a form.
Comments CurrentRecord is a property of the Form object.
Example 'Example of CurrentRecord property

'OutputA is an edit control.
'Display the number of the current record.
OutputA = Forms().CurrentRecord

Object.Data
Accesses data from an object or assigns data to the object.
Parameter Object An object.
Return Value None for assignments.

Data stored in the object for accesses.

Satellite Forms 8
Development Guide

346

DateToSysDate

Delay

Comments Data is a property of the Control and Field objects.
Use the Data property to access data from controls and fields, or to assign
data to controls and fields.

Example 'Example of the Data property for both assignmentand access
'InputA and OutputA through OutputD are edit controls.
'Emps is a table.
'Data from a control
OutputA.Data = InputA.Data
'Data from a field in a table
'for the current record
OutputB.Data = Tables("Emps").Fields("Salary").Data
'The Data property is the default property for
'controls. Thus, the following statement is
'equivalent to the one above:
OutputC = InputA
OutputD = Tables("Emps").Fields("Salary")

DateToSysDate(Date)
Converts a user-readable date to days since January 1, 1904.
Parameter Date Date in the format specified in the handheld preferences.
Return Value Days since January 1, 1904.
Comments DateToSysDate is a method of the App object.
See Also SysDateToDate, GetSysDate, GetSysTime, SysTimeToTime,

TimeToSysTime

Delay(Duration)
Waits a specified number of milliseconds.
Parameter Duration Duration of the delay in milliseconds.
Return Value None
Comments Delay is a method of the App object.
Example 'Example of Delay method

'InputA and InputB are edit controls.
Tone(InputA, InputB)
Delay(1000)
Tone(2 * InputA, InputB)

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

347

DeleteRecord

Dim

Tables(TableName).DeleteRecord(RecordNumber)
Deletes a record from a table. This method does not prompt the user to confirm deletion.
Parameters TableName

RecordNumber
Name of a table.
Zero-based number of the row to be deleted.

Return Value None
Comments DeleteRecord is a method of the Table object.
Example 'Example of Delete Record 'method

Dim count, i
'Get number of records in the table
count = Tables("emp").Count()
'Iterate through all records and delete
'the first record in the table.
for i=0 to count-1

Tables("emp").DeleteRecord(0)
next i

See Also CreateRecord

Dim Variable
Dimensions (declares) a variable as VARIANT type.
Parameter Variable Name of the variable.
Return Value None
Comments Variables of type VARIANT are initialized to a specific data type when you

assign them a value. For example, assigning the value “My text” to a VARIANT
variable changes the variable’s data type to STRING. The data types for variables
are:
FLOAT: floating-point number
INT: integer
STRING: string
Use the conversion operators Float, Int, and Str to convert one data type
to another.

Example 'Example of Dimensioning variables
Dim x
Dim y
Dim z
'Assign variables to values.
x = 33 ' x becomes INT
y = 33.00 ' y becomes FLOAT
z = "33" ' z becomes STRING

See Also Data type conversion operators: Float, Int, Str

Satellite Forms 8
Development Guide

348

DisableScanner

DrawBar

DrawCircle

Extension.DisableScanner()
Turns off the serial port and disables scanning. Uses less battery power.
Parameters None
Return Value None
Comments Applies only to the Bar Code Reader and Symbol Integrated Scanner

extensions.
Caution: DO Not Call Other Symbol Scanner Functions While the Symbol
Integrated Scanner scanner is disabled. A fatal exception may result.

Example 'Example of DisableScanner()
BarCode1.DisableScanner()

DrawBar(X, Y, W, H)
Draws a filled bar, as for a bar graph, using the current Pen and Fill colors.
Parameters X X-origin of the bottom-left corner of the bar.

Y Y-origin of the bottom-left corner of the bar.
W Width of the bar.
H Height of the bar.

Return Value None
Comments Applies only to the Graphics and Color Graphics extensions.
Example ‘Example of DrawBar(X, Y, W, H)

DrawBar(20, 20, 10, 27)

See Also EraseBar

DrawCircle(X0, Y0, R)
Draws a circle using the current Pen and Fill colors.
Parameters X0 X-origin of the center of the circle in pixels.

Y0 Y-origin of the center of the circle in pixels.
R Radius of the circle in pixels.

Return Value None
Comments Applies only to the Graphics and Color Graphics extensions.
Example ‘Example of DrawCircle(X0, Y0, R)

DrawCircle(35, 15, 20)

See Also EraseCircle

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

349

DrawLine

DrawRect

DrawRoundedRect

DrawLine(X0, Y0, X1, Y1)
Draws a line using the current Pen color.
Parameters X0 X-origin of the line in pixels.

Y0 Y-origin of the line in pixels.
X1 X-end of the line in pixels.
Y1 Y-end of the line in pixels.

Return Value None
Comments Applies only to the Graphics and Color Graphics extensions.
Example ‘Example of DrawLine(X0, Y0, X1, Y1)

DrawLine(10, 10, 40, 40)

See Also EraseLine

DrawRect(X0, Y0, X1, Y1)
Draws a rectangle using the current Pen and Fill colors.
Parameters X0 X-origin of the upper left corner of the rectangle in pixels.

Y0 Y-origin of the upper left corner of the rectangle in pixels.
X1 X-origin of the lower right corner of the rectangle in pixels.
Y1 Y-origin of the lower right corner of the rectangle in pixels.

Return Value None
Comments Applies only to the Graphics and Color Graphics extensions.
Example ‘Example of DrawRect(X0, Y0, X1, Y1)

DrawRect(10, 10, 40, 40)

See Also EraseRect

DrawRoundedRect(X0, Y0, X1, Y1, R)
Draws a rounded rectangle with the specified corner radius using the current Pen and Fill
colors.
Parameters X0 X-origin of the upper left corner of the rectangle in pixels.

Y0 Y-origin of the upper left corner of the rectangle in pixels.
X1 X-origin of the lower right corner of the rectangle in pixels.
Y1 Y-origin of the lower right corner of the rectangle in pixels.
R Radius of the rectangle’s corners.

Return Value None
Comments Applies only to the Graphics and Color Graphics extensions.
Example ‘Example of DrawRoundedRect(X0, Y0, X1, Y1, R)

DrawRoundedRect(10, 10, 40, 40, 15)

See Also EraseRect

Satellite Forms 8
Development Guide

350

DrawText

DRand48

DREM

EditExAbout

DrawText(Strg, X, Y)
Draws text at the specified point using the current text color.
Parameters Strg Text to draw.

X Y-origin of the upper left corner of the text in pixels.
Y X-origin of the upper left corner of the text in pixels.

Return Value None
Comments Applies only to the Graphics and Color Graphics extensions.
Example ‘Example of DrawText(Strg, X, Y)

DrawText("I’m here", 40, 40)

See Also EraseText, InvertText

DRand48()
Returns a psuedo-random number greater than 0 but less than or equal to 1.
Parameters None
Return Value A psuedo-random number greater than 0 but less than or equal to 1.
Comments Requires the Random Number Generator extension.
Example 'Example of DRand48()

Dim z
z = DRand48()

DREM(y, x)
Calculates the remainder of x/y.
Parameters x The numerator of the division operation.

y The denominator of the division operation.
Return Value The remaindert of x/y.
Comments Requires the Math extension.
Example 'Example of DREM(x, y)

Dim z
z = DREM(x, y)

EditExAbout()
Displays information about the extension in a dialog box.
Parameters None
Return Value None
Comments Applies only to the EditEx extension.
Example 'Example of EditExAbout()

EditExAbout()

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

351

EditExAppendText

EditExBackspace

EditExDeleteText

EditExGetInsertion

EditExAppendText(AppDesIndex, Text)
Appends text to the specified control's text.
Parameters AppDesIndex Index of the desired Edit or Paragraph control on the form.

Text The text to append to the text in the specified control.
Return Value None
Comments Applies only to the EditEx extension.
Example 'Example of EditExAppendText(AppDesIndex, Text)

EditExAppendText(2, "More text")

EditExBackspace(AppDesIndex)
Backspaces one character in the specified control.
Parameter AppDesIndex Index of the desired Edit or Paragraph control on the form.
Return Value None
Comments Applies only to the EditEx extension.
Example 'Example of EditExBackspace(AppDesIndex)

EditExBackspace(2)

EditExDeleteText(AppDesIndex, Start, End)
Deletes the specified text from the specified control.
Parameters AppDesIndex Index of the desired Edit or Paragraph control on the form.

Start Start position from which to begin deleting text in the specified
control.

End End position at which to stop deleting text in the specified
control.

Return Value None
Comments Applies only to the EditEx extension.
Example 'Example of EditExDeleteText(AppDesIndex, Start, End)

EditExDeleteText(2, 4, 10)

EditExGetInsertion(AppDesIndex)
Returns the current insertion position in the specified control.
Parameter AppDesIndex Index of the desired Edit or Paragraph control on the form.
Return Value Integer indicating the position of the insertion point in the specified control.
Comments Applies only to the EditEx extension.
Example 'Example of EditExGetInsertion(AppDesIndex)

Dim iPoint
iPoint = EditExGetInsertion(2)

Satellite Forms 8
Development Guide

352

EditExGetSelectionEnd

EditExGetSelectionStart

EditExInsertText

EditExInStr

EditExGetSelectionEnd(AppDesIndex)
Returns the end position of the text selection in the specified control.
Parameter AppDesIndex Index of the desired Edit or Paragraph control on the form.
Return Value Integer indicating the end position of the selected text in the specified control.
Comments Applies only to the EditEx extension.
Example 'Example of EditExGetSelectionEnd(AppDesIndex)

Dim iSelEnd
iSelEnd = EditExGetSelectionEnd(2)

EditExGetSelectionStart(AppDesIndex)
Returns the start position of the text selection in the specified control.
Parameter AppDesIndex Index of the desired Edit or Paragraph control on the form.
Return Value Integer indicating the start position of the selected text in the specified control.
Comments Applies only to the EditEx extension.
Example 'Example of EditExGetSelectionStart(AppDesIndex)

Dim iSelEnd
iSelEnd = EditExGetSelectionStart(2)

EditExInsertText(AppDesIndex, Text)
Inserts the specified text at the current insertion position in the specified control.
Parameters AppDesIndex Index of the desired Edit or Paragraph control on the form.

Text Text to insert into the specified control.
Return Value None
Comments Applies only to the EditEx extension.
Example 'Example of EditExInsertText(AppDesIndex, Text)

EditExInsertText(2, "Some text")

EditExInStr(Start, String1, String2, Compare)
Returns the position of the first occurrence of one string within another.
Parameters AppDesIndex Index of the desired Edit or Paragraph control on the form.

String1 The string to search in.
String2 String containing the text to search for.
Compare 0 = Binary comparison. 1 = case-insensitive text comparison.

Default setting is 0.
Return Value None
Comments Applies only to the EditEx extension.
Example 'Example of EditExInStr(Start, String1, String2, Compare)

EditExInStr(5, sText1, sText2, 1)

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

353

EditExSetInsertion

EditExSetSelection

Empty

EnableScanner

EditExSetInsertion(AppDesIndex, Insertion)
Sets the insertion position in the specified control.
Parameters AppDesIndex Index of the desired Edit or Paragraph control on the form.

Insertion Index at which to set the insertion point in the specified control.
Return Value None
Comments Applies only to the EditEx extension.
Example 'Example of EditExSetInsertion(AppDesIndex, Insertion)

EditExSetInsertion(2, 5)

EditExSetSelection(AppDesIndex, Start, End)
Sets the text selection in the specified control.
Parameters AppDesIndex Index of the desired Edit or Paragraph control on the form.

Start Start position at which to set the text selection in the specified
control.

End End position at which to stop the text selection in the specified
control.

Return Value None
Comments Applies only to the EditEx extension.
Example 'Example of EditExSetSelection(AppDesIndex, Start, End)

EditExSetSelection(2, 4, 10)

x = Empty
Sets a table field or variable to an Empty state.
Parameters None
Return Value None
Comments Applies only to table fields and to variables, but not to controls.

Fields in a new record are always initialized to Empty, which is not equal to ""
(empty string) or 0. New variables are also initialized to Empty. Once you
assign a value to a field or variable, it is no longer Empty. However, you can
make the table field or variable empty again by assigning it to Empty. You can
test whether a field or variable is empty using the IsEmpty(object) keyword.
Caution: Empty and IsEmpty must not be used with controls. Note:
AppDesigner does not currently enforce this rule when compiling your
application, so you need to make sure not to use Empty with controls!

Example 'Example of assigning Empty to a var and testing with IsEmpty
x = Empty
if IsEmpty(x) then msgbox(“x is Empty!”)

'Example of assigning Empty to a table field
Tables(tablename).Fields(fieldname) = Empty

See Also IsEmpty

Extension.EnableScanner()
Turns on the serial port and disables scanning. Uses more battery power.

Satellite Forms 8
Development Guide

354

EraseBar

EraseCircle

EraseLine

Parameters None
Return Value None
Comments Applies only to the Bar Code Reader and Symbol Integrated Scanner

extensions.
Caution: You must call this method before calling other Symbol Integrated
Scanner methods. Otherwise, a fatal exception may result.

Example 'Example of EnableScanner()
BarCode1.EnableScanner()

EraseBar(X, Y, W, H)
Erases a filled bar drawn using the the DrawBar method.
Parameters X X-origin of the bottom-left corner of the bar.

Y Y-origin of the bottom-left corner of the bar.
W Width of the bar.
H Height of the bar.

Return Value None
Comments Applies only to the Graphics and Color Graphics extensions.
Example ‘Example of EraseBar(X, Y, W, H)

EraseBar(20, 20, 10, 27)

See Also DrawBar

EraseCircle(X0, Y0, R)
Erases a circle drawn using the the DrawCircle method.
Parameters X0 X-origin of the center of the circle in pixels.

Y0 Y-origin of the center of the circle in pixels.
R Radius of the circle in pixels.

Return Value None
Comments Applies only to the Graphics and Color Graphics extensions.
Example ‘Example of EraseCircle(X0, Y0, R)

EraseCircle(35, 15, 20)

See Also DrawCircle

 EraseLine(X0, Y0, X1, Y1)
Erases a line drawn using the the DrawLine method.
Parameters X0 X-origin of the line in pixels.

Y0 Y-origin of the line in pixels.
X1 X-end of the line in pixels.
Y1 Y-end of the line in pixels.

Return Value None
Comments Applies only to the Graphics and Color Graphics extensions.
Example ‘Example of EraseLine(X0, Y0, X1, Y1)

EraseLine(10, 10, 40, 40)

See Also DrawLine

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

355

EraseRect

EraseText

ExecAction

EraseRect(X0, Y0, X1, Y1)
Erases a rectangle drawn using the the DrawRect method.
Parameters X0 X-origin of the upper left corner of the rectangle in pixels.

Y0 Y-origin of the upper left corner of the rectangle in pixels.
X1 X-origin of the lower right corner of the rectangle in pixels.
Y1 Y-origin of the lower right corner of the rectangle in pixels.

Return Value None
Comments Applies only to the Graphics and Color Graphics extensions. If the current Fill

color is Transparent, this method does not erase the Fill area of the specified
rectangle.

Example ‘Example of EraseRect(X0, Y0, X1, Y1)
EraseRect(10, 10, 40, 40)

See Also DrawRect, DrawRoundedRect

EraseText(Strg, X, Y)
Draws text at the specified point using the current text color.
Parameters Strg Text to erase.

X Y-origin of the upper left corner of the text in pixels.
Y X-origin of the upper left corner of the text in pixels.

Return Value None
Comments Applies only to the Graphics and Color Graphics extensions.
Example ‘Example of EraseText(Strg, X, Y)

EraseText("I’m here", 40, 40)

See Also DrawText

Object.ExecAction
Executes the action associated with an object.
Parameter Object An object.
Return Value None
Comments ExecAction is a method of the Control object. You can use ExecAction

to implement a simple form of subroutine calls. Parameters, however, are not
supported and must be passed in globals.
Note: do not nest too many levels of ExecAction commands; Palm OS
handhelds have very limited stack space.

Example 'Example of executing the action of a button
'Button1 and Button2 are buttons.
Button1.ExecAction

Satellite Forms 8
Development Guide

356

Exit

EXP

EXPM1

Exit
Exits from a script with success.
Parameters None
Return Value None
Comments Use Exit and Fail in validation events to make validation succeed or fail.

Use them in BeforeRecordDelete to allow or prevent deletion of a record.
Using Exit or Fail in other events simply ends the current script.

Example 'Example of the Exit and Fail keywords.
'Use this code in a validation event.
'InputA is an edit control.
'Entering a number less than 10 in InputA fails validation.
If InputA >= 10 Then

Exit
Else

Fail
EndIf

See Also Fail

EXP(x)
Calculates the exponential e to the x.
Parameter x The number to raise to the exponential of itself.
Return Value The exponential e to the x.
Comments Requires the Math extension.
Example 'Example of EXP(x)

Dim z
Dim x
x = 4.0
‘Calculate 4.0 to the fourth power
z = EXP(x)

EXPM1(x)
Calculates the exponential e to the x -1.
Parameter x The number to raise to the exponential of itself.
Return Value The exponential e to the x -1.
Comments Requires the Math extension.
Example 'Example of EXPM1(x)

Dim z
Dim x
x = 4.0
z = EXPM1(x)

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

357

Fail

FastTrack

FF_DeviceHasVFS

Fail
Exits from a routine with failure.
Parameters None
Return Value None
Comments Use Exit and Fail in validation events to make validation succeed or fail.

Use them in BeforeRecordDelete to allow or prevent deletion of a record.
Using Exit or Fail in other events simply ends the current script.

Example 'Example of the Exit and Fail keywords
'Use this code in a validation event.
'InputA is an edit control.
'Entering a number less than 10 in InputA fails validation.
If InputA >= 10 Then

Exit
Else

Fail
EndIf

See Also Exit

Extension.FastTrack(boolean)
Specifies how often the OnClick event fires.
Parameter boolean 0 = Fire OnClick event every time the stylus moves.

 1 = Fire OnClick event only after the user lifts the stylus.
The default setting is 0.

Return Value None
Comments Applies only to the Slider and Color Slider controls.
Example ‘Example of FastTrack(boolean)

ColorSlider1.FastTrack(1)

FF_DeviceHasVFS()
[Palm OS only.] Check whether the current device has Palm OS VFS memory card support.
Parameters None
Return Value Returns True if device has VFS, or False if not.
Comments FF_DeviceHasVFS requires the FindFiles extension. This function is for

Palm OS platform devices only. Use this function to check if the current
Palm OS device supports VFS expansion memory cards. You may wish to
check this on startup of your app, and if no VFS support is provided you
would then make sure that all file operations were for internal memory only.

Example 'Example of FF_DeviceHasVFS function
if not FF_DeviceHasVFS then

MsgBox(“Palm device does not have memory card support”)
endif

See Also FF_FindFirstFileVFS, FF_FindNextFileVFS, FF_GetNextVolRef,
FF_GetVFSLabel, FF_GetVFSVolRef, FF_SetVFSVolRef

Satellite Forms 8
Development Guide

358

FF_FindClose

FF_FindFirstDir

FF_FindClose()
Close an open Find operation when done with it.
Parameters None
Return Value None
Comments FF_FindClose requires the FindFiles extension. Use this function to close

an active Find operation that was opened with FF_FindOpen, when you
are finished with it.

See Also FF_FindClose

FF_FindFirstDir(path, name)
Find first directory in a new search.
Parameters path String containing the starting path from which you want to

start searching, which should begin and end with a
backslash “\” char. [For Palm OS this operates on a VFS
card volume, and for Pocket PC this parameter is ignored.]

name Name is the directory substring you wish to match. For Palm
OS, leave it blank to match any directory. For Pocket PC,
use an “*” asterisk wildcard to match any directory.

Return Value The function returns 1 (True) to indicate a match, or 0 (False) if no match
was found.

Comments FF_FindFirstDir requires the FindFiles extension. If this function finds a
match, then you would use FF_GetFileName to get the name of the
matching directory that was found. This function might be called in a loop
to obtain a list of directories, as in the example below.

Example 'Example of finding a list of directories
'This would operate on a VFS memory card on Palm OS
dim bFound, dirname, dirlist
edFound = 0
dirlist = ""
pgFileList = ""
'the path parameter is ignored on PPC
'search VFS card from specified path
bFound = FF_FindFirstDir(edpath, edname)
while bFound = true

dirname = FF_GetFileName
dirlist = dirlist &dirname
edFound = edFound + 1
bFound = FF_FindNextDir
if bFound then dirlist = dirlist &chr(10)

wend
FF_FindClose
if edFound = 0 then

pgFileList = "Did not find any matching dirs."
else

pgFileList = dirlist
endif

See Also FF_FindFirstFile, FF_FindFirstFileVFS, FF_FindNextDir,
FF_FindNextFile, FF_FindNextFileVFS

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

359

FF_FindFirstFile

FF_FindFirstFileVFS

FF_FindFirstFile(name, creator, type)
Find first file in a new search.
Parameters name Name is the filename substring you wish to match. For Palm

OS, leave it blank to match any file. For Pocket PC, use an
“*” asterisk wildcard to match any file.

creator The 4-character CreatorID string of the file to match, leave
blank to match any. [Palm OS only, ignored on Pocket PC]

type The 4-character Type string of the file to match, leave blank
to match any. [Palm OS only, ignored on Pocket PC]

Return Value The function returns 1 (True) to indicate a match, or 0 (False) if no match
was found.

Comments FF_FindFirstFile requires the FindFiles extension. If this function finds a
match, then you would use additional functions like FF_GetFileName,
FF_GetFileSize, or FF_GetFileDateModified to get the name, size, and
date of the matching file that was found. This function might be called in a
loop to obtain a list of files, as in the example below.

Example 'find files
dim bFound, filename, filesize, filelist
edFound = 0
filelist = ""
pgFileList = ""
bFound = FF_FindFirstFile(edname, edcreator, edtype)
while bFound = true

filename = FF_GetFileName
filesize = FF_GetFileSize
filelist = filelist &filename &", " &filesize &" bytes"
edFound = edFound + 1
bFound = FF_FindNextFile
if bFound then filelist = filelist &chr(10)

wend
FF_FindClose
if edFound = 0 then

pgFileList = "Did not find any matching files."
else

pgFileList = filelist
endif

See Also FF_FindFirstDir, FF_FindFirstFileVFS, FF_FindNextDir,
FF_FindNextFile, FF_FindNextFileVFS

FF_FindFirstFileVFS(path, name, creator, type)
[Palm OS only.] Find first file in a new search on a VFS memory card.
Parameters path Path is the starting path from which you want to start

searching, which should begin and end with a backslash “\”
char. [Palm OS only, ignored on Pocket PC]

name Name is the filename substring you wish to match. For Palm
OS, leave it blank to match any file. For Pocket PC, use an “*”
asterisk wildcard to match any file.

creator The 4-character CreatorID string of the file to match, leave
blank to match any. [Palm OS only, ignored on Pocket PC]

Satellite Forms 8
Development Guide

360

FF_FindNextDir

type The 4-character Type string of the file to match, leave blank to
match any. [Palm OS only, ignored on Pocket PC]

Return Value The function returns 1 (True) to indicate a match, or 0 (False) if no match
was found.

Comments FF_FindFirstFileVFS requires the FindFiles extension. On Palm OS platform
devices, this function is used to find files on a memory card. On Pocket PC
devices, this function works identically to the FF_FindFirstFile function. If this
function finds a match, then you would use additional functions like
FF_GetFileName, FF_GetFileSize, or FF_GetFileDateModified to get the
name, size, and date of the matching file that was found. This function might
be called in a loop to obtain a list of files, as in the example below.

Example 'find files on a memory card
dim bFound, filename, filesize, filelist
edFound = 0
filelist = ""
pgFileList = ""
bFound = FF_FindFirstFileVFS(edpath, edname, edcreator, edtype)
while bFound = true

filename = FF_GetFileName
filesize = FF_GetFileSize
filelist = filelist &filename &", " &filesize &" bytes"
edFound = edFound + 1
bFound = FF_FindNextFileVFS
if bFound then filelist = filelist &chr(10)

wend
FF_FindClose
if edFound = 0 then

pgFileList = "Did not find any matching files."
else

pgFileList = filelist
endif

See Also FF_DeviceHasVFS, FF_FindNextFileVFS, FF_GetNextVolRef,
FF_GetVFSLabel, FF_GetVFSVolRef, FF_SetVFSVolRef

FF_FindNextDir()
Find next directory in existing search started with FF_FindFirstDir.
Parameters None
Return Value The function returns 1 (True) to indicate a match, or 0 (False) if no match

was found.
Comments FF_FindNextDir requires the FindFiles extension. If this function finds a

match, then you would use FF_GetFileName to get the name of the
matching directory that was found. This function might be called in a loop
to obtain a list of directories, as in the example shown in the
FF_FindFirstDir reference. For Palm OS devices, this function operates
on internal memory, and you would use FF_FindNextDirVFS for memory
cards.

Example See example for FF_FindFirstDir.
See Also FF_FindFirstDir, FF_FindFirstFile, FF_FindFirstFileVFS,

FF_FindNextFile, FF_FindNextFileVFS

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

361

FF_FindNextFile

FF_FindNextFileVFS

FF_GetFileAttr

FF_FindNextFile()
Find next file in existing search started with FF_FindFirstFile.
Parameters None
Return Value The function returns 1 (True) to indicate a match, or 0 (False) if no match

was found.
Comments FF_FindNextFile requires the FindFiles extension. If this function finds a

match, then you would use FF_GetFileName to get the name of the
matching directory that was found. This function might be called in a loop
to obtain a list of directories, as in the example shown in the
FF_FindFirstFile reference. For Palm OS devices, this function operates
on internal memory, and you would use FF_FindNextFileVFS for memory
cards.

Example See example for FF_FindFirstFile.
See Also FF_FindFirstDir, FF_FindFirstFile, FF_FindFirstFileVFS,

FF_FindNextDir, FF_FindNextFileVFS

FF_FindNextFileVFS()
[Palm OS only.] Find next file on memory card in search started with FF_FindFirstFileVFS.
Parameters None
Return Value The function returns 1 (True) to indicate a match, or 0 (False) if no match

was found.
Comments FF_FindNextFileVFS requires the FindFiles extension. If this function

finds a match, then you would use FF_GetFileName to get the name of
the matching directory that was found. This function might be called in a
loop to obtain a list of directories, as in the example shown in the
FF_FindFirstFileVFS reference. For Palm OS devices, this function
operates on memory cards, and you would use FF_FindNextFile for
internal memory. For Pocket PC, this function works identically to
FF_FindNextFile.

Example See example for FF_FindFirstFileVFS.
See Also FF_DeviceHasVFS, FF_FindFirstFileVFS, FF_GetNextVolRef,

FF_GetVFSLabel, FF_GetVFSVolRef, FF_SetVFSVolRef

FF_GetFileAttr()
Get the attributes of the currently matching file.
Parameters None
Return Value The function returns a numeric value which includes the file attribute bit

values. The attribute bit values are dependent on the OS platform.
Comments FF_GetFileAttr requires the FindFiles extension. This function operates

on the current file found by FF_FindFirstFile or FF_FindNextFile. File
attribute bit values are listed below.
Palm OS File Attributes
&H0001 Resource database (PRC), not Record database (PDB)
&H0002 Read Only
&H0004 AppInfo block is dirty
&H0008 Backup bit is set
&H0010 OK to install newer

Satellite Forms 8
Development Guide

362

FF_GetFileCreator

&H0020 Reset after install
&H0040 Copy Prevention bit is set
&H0080 Stream database
&H0100 Hidden database
&H0200 Launchable Data
&H0400 Recyclable
&H0800 Bundle
&H8000 Database is Open

Pocket PC File Attributes
&H0001 FILE_ATTRIBUTE_READONLY
&H0002 FILE_ATTRIBUTE_HIDDEN
&H0004 FILE_ATTRIBUTE_SYSTEM
&H0010 FILE_ATTRIBUTE_DIRECTORY
&H0020 FILE_ATTRIBUTE_ARCHIVE
&H0040 FILE_ATTRIBUTE_INROM
&H0080 FILE_ATTRIBUTE_NORMAL
&H0100 FILE_ATTRIBUTE_TEMPORARY
&H0200 FILE_ATTRIBUTE_SPARSE_FILE
&H0400 FILE_ATTRIBUTE_REPARSE_POINT
&H0800 FILE_ATTRIBUTE_COMPRESSED
&H1000 FILE_ATTRIBUTE_ROMSTATICREF
&H2000 FILE_ATTRIBUTE_ROMMODULE

Example 'find files
dim bFound, filename, fileattr, filelist
edFound = 0
filelist = ""
pgFileList = ""
bFound = FF_FindFirstFile(edname, edcreator, edtype)
while bFound = true

filename = FF_GetFileName
fileattr = FF_GetFileAttr
filelist = filelist &filename &", attr:" &fileattr
edFound = edFound + 1
bFound = FF_FindNextFile
if bFound then filelist = filelist &chr(10)

wend
FF_FindClose
if edFound = 0 then

pgFileList = "Did not find any matching files."
else

pgFileList = filelist
endif

See Also FF_GetFileDateBackedUp, FF_GetFileDateCreated,
FF_GetFileDateModified, FF_GetFileName, FF_GetFileSize

FF_GetFileCreator()
[Palm OS only.] Get the Palm OS creatorID of the currently matching file.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

363

FF_GetFileDateBackedUp

FF_GetFileDateCreated

Parameters None
Return Value The function returns the creatorID 4-character string.
Comments FF_GetFileCreator requires the FindFiles extension. This function

operates on the current file found by FF_FindFirstFile or
FF_FindNextFile. This function is for the Palm OS platform only, and
always returns a blank string on the Pocket PC platform.

Example filecreator = FF_GetFileCreator

See Also FF_GetFileType, FF_GetFileVersion

FF_GetFileDateBackedUp()
Get the “last backed up” date of the currently matching file.
Parameters None
Return Value The function returns the file last backed up date in system time format.
Comments FF_GetFileDateBackedUp requires the FindFiles extension. This function

operates on the current file found by FF_FindFirstFile or
FF_FindNextFile. The system time value returned can be converted into
a date and time.

Example 'get file dates (system time seconds since 00:00 Jan 1, 1904)
'system time format includes both the date and time value
'this value is a signed 32 bit integer and can be negative
'so for date we convert to a positive by adding 2 ^ 32 to
'the returned value and converting that from seconds into
'days (divide secs by 86400 secs/day)
dim UInt32MAX, filelist
UInt32MAX = 4294967296
if FF_FindFirstFile(edname, edcreator, edtype) = true then

filename = FF_GetFileName
filedateBU = FF_GetFileDateBackedUp
filedateMO = FF_GetFileDateModified
filedateCR = FF_GetFileDateCreated
filelist = filename _
&" C:" &SysDateToDate((filedateCR+UInt32MAX)/86400) _
&", M:" &SysDateToDate((filedateMO+UInt32MAX)/86400) _
&", B:" &SysDateToDate((filedateBU+UInt32MAX)/86400)

endif
FF_FindClose
pgFileList = filelist

See Also FF_GetFileAttr, FF_GetFileDateCreated, FF_GetFileDateModified,
FF_GetFileName, FF_GetFileSize

FF_GetFileDateCreated()
Get the creation date of the currently matching file.
Parameters None
Return Value The function returns the file creation date in system time format.
Comments FF_GetFileDateCreated requires the FindFiles extension. This function

operates on the current file found by FF_FindFirstFile or
FF_FindNextFile. The system time value returned can be converted into
a date and time.

Satellite Forms 8
Development Guide

364

FF_GetFileDateModified

FF_GetFileName

Example See the example for FF_GetFileDateBackedUp
See Also FF_GetFileAttr, FF_GetFileDateBackedUp, FF_GetFileDateModified,

FF_GetFileName, FF_GetFileSize

FF_GetFileDateModified()
Get the last modified date of the currently matching file.
Parameters None
Return Value The function returns the file last modified date in system time format.
Comments FF_GetFileDateModified requires the FindFiles extension. This function

operates on the current file found by FF_FindFirstFile or
FF_FindNextFile. The system time value returned can be converted into
a date and time.

Example See the example for FF_GetFileDateBackedUp
See Also FF_GetFileAttr, FF_GetFileDateBackedUp, FF_GetFileDateCreated,

FF_GetFileName, FF_GetFileSize

FF_GetFileName()
Get the name of the currently matching file or directory.
Parameters None
Return Value String containing the name of the currently matching file or directory.
Comments FF_GetFileName requires the FindFiles extension. This function operates

on the current file found by FF_FindFirstFile/FF_FindNextFile, or
directory found by FF_FindFirstDir/FF_FindNextDir.

Example 'find files
dim bFound, filename, filesize, filelist
edFound = 0
filelist = ""
pgFileList = ""
bFound = FF_FindFirstFile(edname, edcreator, edtype)
while bFound = true

filename = FF_GetFileName
filesize = FF_GetFileSize
filelist = filelist &filename &", " &filesize &" bytes"
edFound = edFound + 1
bFound = FF_FindNextFile
if bFound then filelist = filelist &chr(10)

wend
FF_FindClose
if edFound = 0 then

pgFileList = "Did not find any matching files."
else

pgFileList = filelist
endif

See Also FF_GetFileAttr, FF_GetFileDateBackedUp, FF_GetFileDateCreated,
FF_GetFileDateModified, FF_GetFileSize

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

365

FF_GetFileSize

FF_GetFileType

FF_GetFileVersion

FF_GetLastErr

FF_GetFileSize()
Get the size of the currently matching file.
Parameters None
Return Value Size of the currently matching file in bytes.
Comments FF_GetFileSize requires the FindFiles extension. This function operates

on the current file found by FF_FindFirstFile/FF_FindNextFile, or
directory found by FF_FindFirstDir/FF_FindNextDir.

Example See the example for FF_GetFileName
See Also FF_GetFileAttr, FF_GetFileDateBackedUp, FF_GetFileDateCreated,

FF_GetFileDateModified, FF_GetFileName

FF_GetFileType()
[Palm OS only.] Get the Palm OS type of the currently matching file.
Parameters None
Return Value The function returns the 4-character Palm OS type string.
Comments FF_GetFileType requires the FindFiles extension. This function operates

on the current file found by FF_FindFirstFile or FF_FindNextFile. This
function is for the Palm OS platform only, and always returns a blank
string on the Pocket PC platform.

Example filetype = FF_GetFileType

See Also FF_GetFileCreator, FF_GetFileVersion

FF_GetFileVersion()
[Palm OS only.] Get the version number of the currently matching file.
Parameters None
Return Value The function returns the file version number.
Comments FF_GetFileVersion requires the FindFiles extension. This function

operates on the current file found by FF_FindFirstFile or
FF_FindNextFile. This function is for the Palm OS platform only, and
always returns zero on the Pocket PC platform. This is NOT the
application-defined version number, this is a Palm OS database-specific
version number, which is seldom used.

Example fileversion = FF_GetFileVersion

See Also FF_GetFileCreator, FF_GetFileType

FF_GetLastErr()
Get the last error code for FindFiles file functions.
Parameters None
Return Value A return value of 0 indicates no error, any other value is a file error.
Comments FF_GetLastErr requires the FindFiles extension.
Example result = FF_GetLastErr

See Also

Satellite Forms 8
Development Guide

366

FF_GetNextVolRef

FF_GetVFSLabel

FF_GetNextVolRef(bFirst)
[Palm OS only.] Get the first or next VFS volume reference, which identifies a VFS memory
card volume for use in other functions.
Parameters bFirst Boolean value indicating (true) if you are starting a new volume

enumeration or (false) if you are getting the next available
volume reference.

Return Value A volume reference number >= 1 if a volume is found, or 0 if there are no more
volumes

Comments FF_GetNextVolRef requires the FindFiles extension. This function is for the
Palm OS platform only, and always returns 0 on Pocket PC. Use this function
in a loop to get volrefs for all of the available memory card volumes, until the
function returns a 0 indicating no more volumes. NOTE: volrefs may not be
sequential, so you cannot assume they are in sequence from 1..n. Volume
reference numbers are used for all other “VFS” functions in the FindFiles
extension.

Example 'enumerate all VFS volumes and add to table for droplist
dim volref, numrecs, loop
'clear all records from the table
numrecs = tables("tblVolumes").count
for loop = 1 to numrecs

tables("tblVolumes").removerecord(numrecs - loop)
next
'add a record for internal RAM (card 0)
tables("tblVolumes").createrecord
tables("tblVolumes").movelast
tables("tblVolumes").fields("volref") = 0
tables("tblVolumes").fields("label") = "RAM"
'find the first volume
volref = FF_GetNextVolRef(True)
while volref <> 0

tables("tblVolumes").createrecord
tables("tblVolumes").movelast
tables("tblVolumes").fields("volref") = volref
tables("tblVolumes").fields("label")=FF_GetVFSLabel(volref)
volref = FF_GetNextVolRef(false)

wend

See Also FF_DeviceHasVFS, FF_FindFirstFileVFS, FF_FindNextFileVFS,
FF_GetVFSLabel, FF_GetVFSVolRef, FF_SetVFSVolRef

FF_GetVFSLabel(volref)
[Palm OS only.] Get the label of the specified VFS volume reference.
Parameters volref Numeric VFS volume reference, from FF_GetNextVolRef
Return Value A string containing the volume label. If there is an error, a blank string is

returned. It is also possible for a memory card to have a blank label, in which
case a blank string would be returned as well.

Comments FF_GetVFSLabel requires the FindFiles extension. This function is for the
Palm OS platform only, and is for memory cards only.

Example See the example for FF_GetNextVolRef
See Also FF_DeviceHasVFS, FF_FindFirstFileVFS, FF_FindNextFileVFS,

FF_GetNextVolRef, FF_GetVFSVolRef, FF_SetVFSVolRef

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

367

FF_GetVFSVolRef

FF_SetCaseSensitive

FF_SetVFSVolRef

FF_ShowPrivateVolumes

FF_GetVFSVolRef()
[Palm OS only.] Gets the currently active global VFS volume reference.
Parameters None
Return Value A numeric volume reference number.
Comments FF_GetVFSVolRef requires the FindFiles extension. This function is for the

Palm OS platform only, and is for memory cards only. The active volume
reference number is set with the FF_SetVFSVolRef function.

Example volref = FF_GetVFSVolRef()

See Also FF_DeviceHasVFS, FF_FindFirstFileVFS, FF_FindNextFileVFS,
FF_GetNextVolRef, FF_GetVFSLabel, FF_SetVFSVolRef

FF_SetCaseSensitive(bSensitive)
[Palm OS only.] Set the filename matching case sensitivity true or false for a new search.
Parameters bSensitive Boolean True or False
Return Value None
Comments FF_SetCaseSensitive requires the FindFiles extension. This function is for the

Palm OS platform only, as Pocket PC FindFiles functions are always NOT
case sensitive.

Example 'set case sensitivity False
FF_SetCaseSensitive(false)

FF_SetVFSVolRef(volref)
[Palm OS only.] Sets the active global VFS volume reference for use with other functions.
Parameters volref VFS volume reference number of the desired memory card.
Return Value None
Comments FF_SetVFSVolRef requires the FindFiles extension. This function is for the

Palm OS platform only, and is for memory cards only. The active volume
reference number set with this function is used for several VFS related
functions, and should be set before calling those functions.

Example volref = FF_GetNextVolRef(True)
if volref <> 0 then

FF_SetVFSVolRef(volref)
else

MsgBox("Memory card not found")
endif

See Also FF_DeviceHasVFS, FF_FindFirstFileVFS, FF_FindNextFileVFS,
FF_GetNextVolRef, FF_GetVFSLabel, FF_GetVFSVolRef

FF_ShowPrivateVolumes(bShow)
[Palm OS only.] Specify whether to make hidden internal private volumes visible to the
FF_GetNextVolRef function.
Parameters bShow Boolean True or False
Return Value None

Satellite Forms 8
Development Guide

368

Float

FollowCursor

Font

Comments FF_ShowPrivateVolumes requires the FindFiles extension. This function is for
the Palm OS platform only. Palm OS devices with the NVFS memory system
may have hidden internal private volumes that can be accessed through this
function. The hidden internal private volumes should normally be left alone.

Example 'show private volumes for volume enumeration
FF_ShowPrivateVolumes(true)

Float(Variable)
Converts a value to floating point.
Parameter Variable Integer or string value to be converted to floating-point value.
Return Value Floating-point value.
Comments Use the Float conversion operator to convert a number to floating point. Do

this to ensure that operations are carried out as floating point. For example,
when multiplying two very large numbers.
The Float operator stops when it encounters a character. For example, the
string “123ABC” is converted to the floating-point value 123.0. The string
“ABC” is converted to the floating-point value 0.0.

Example 'Example of floating-point conversion
'InputA, InputB, and OutputA are
'edit controls.
OutputA = Float(InputA) * InputB

See Also Int, * [multiply], Str

Extension.FollowCursor(str)
Tapping a control makes it next to scan.
Parameter Str “On” or “Off”
Return Value None
Comments Applies only to the Bar Code Reader and Symbol Integrated Scanner

extensions. Default for the Bar Code Reader is “Off”.
Example 'Example of FollowCursor(str)

BarCode1.FollowCursor("On")

Controls(ControlName).Font
Returns or sets the current font of a control.
Parameter ControlName The name of a control.
Return Value The current FontID of the control, an integer value from 0..7 (PalmOS) or 0..3

(PocketPC) corresponding to this table of FontIDs:
FontID Font Description PalmOS Font Description PocketPC
0 Normal 9 Tahoma 8
1 Bold 9 Tahoma 8 Bold
2 Normal 12 Tahoma 10
3 Symbol 9 Tahoma 10 Bold
4 Symbol 11 n/a
5 Symbol 7 n/a
6 LED n/a
7 Bold 12 n/a

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

369

For…To…Next

FormatDate

Comments Font is a property of the Control object. You can change a control's font
property by setting this property to one of the specified FontID values. In that
case, the function does not return a value.

Example 'Example of Font property
'InputA is an edit control.
'change InputA font to Bold
If InputA.Font = 0 Then
InputA.Font = 1

EndIf

See Also SetPosition

For Variable = InitialValue To FinalValue
[Step] [Increment]
Next Variable
Exit For
Perform a for loop.
Parameters Variable

InitialValue

FinalValue
Increment

The variable that serves as a counter for the loop.
The value to which the counter is initialized at the beginning of
the loop.
The value of the counter during the last execution of the loop
The value that the counter increments to during the Next
statement of each execution of the loop.

Return Value None
Comments Each For...Next loop begins with a Variable set to InitialValue. Typically, a

loop performs some set of operations before the Next statement. The Next
statement increments the value of Variable by the value of Step (Increment).
Increment can be a positive or negative value. If you omit Increment, it defaults
to 1. If you omit Increment, you must also omit the keyword Step.
The loop continues to execute until Variable reaches or passes FinalValue.
The final execution of the loop takes place with Variable <= FinalValue. The
loop exit at the Next statement. To exit a For loop prematurely, use the Exit
For statement.
You can nest multiple For loops. Use the Exit For statement to exit the
current For loop.

Example 'Example of For loop
Dim x
Dim y
For x = 1 to 10

MsgBox("The value of x is " & x)
For y = 1 to 3

MsgBox("The value of y is " & y)
Next y

If x = 4 Then Exit For
Next x

MsgBox("Done.")

See Also While … Wend

FormatDate(Date, FormatString)
Formats a date string according to the format expression.

Satellite Forms 8
Development Guide

370

FormatDateN

Parameters Date
FormatString

The date to be formatted.
A string describing the way in which the date string should be
formatted.

Return Value String containing the date fomatted to the specified appearance.
Comments FormatDate requires the Strings extension. The Date must be in the format set

in the PDA preferences. Satellite Forms always returns a date in that format,
so you can plug in the data from your tables or from SysDateToDate without
any modification. The FormatString determines how the resulting date string
appears, and can include these values:
yy 2 digit year
yyyy 4-digit year
m 1-digit or 2-digit month
mm 2-digit month
mmm 3-character month
mmmm Full month name
d 1-digit or 2-digit day
dd 2-digit day
ddd 3-character day
dddd Full day name
w Day of week as number
q Quarter
y Day of year

Example 'Example of the FormatDate function
dim strTest
strTest = FormatDate("4/12/05", "YYYYMMDD")
'Result: strTest contains "20050412"

See Also FormatDateN, FormatTime, FormatTimeN

FormatDateN(Number, FormatString)
Formats a date string according to the format expression.
Parameters Number

FormatString

The date to be formatted, in system date format as returned
by GetSysDate or DateToSysDate.
A string describing the way in which the date string should be
formatted.

Return Value String containing the date fomatted to the specified appearance.
Comments FormatDate requires the Strings extension. The Number is the date expressed

in system date format (days since 00:00 January 1, 1904), as returned by
GetSysDate or DateToSysDate. See FormatDate for formatting details.

Example 'Example of the FormatDateN function
dim strTest
strTest = FormatDate(37538, "YYYY-MM-DD")
'Result: strTest contains "2006-10-10"

See Also FormatDate, FormatTime, FormatTimeN

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

371

FormatNumber

FormatTime

FormatTimeN

FormatNumber(Number, NumDecimals)
Returns a string representation of a number formatted with the specified number of decimal
places.
Parameters Number

NumDecimals
The number to be formatted.
The desired number of decimal places.

Return Value String containing the number at the specified precision.
Comments FormatNumber is a method of the App object.
Example 'Example of the FormatNumber method

'InputA and OutputA are edit controls.
OutputA = FormatNumber(InputA, 2)

FormatTime(Time, FormatString)
Formats a time string according to the format expression.
Parameters Time

FormatString
The time to be formatted.
A string describing the way in which the time string should be
formatted.

Return Value String containing the time fomatted to the specified appearance.
Comments FormatTime requires the Strings extension. The Time must be in the format set

in the PDA preferences. Satellite Forms always returns a time in that format,
so you can plug in the data from your tables or from SysTimeToTime without
any modification. The FormatString determines how the resulting time string
appears, and can include these values:
h 1-digit or 2-digit hour
hh 2-digit hour
n 1-digit or 2-digit minute
nn 2-digit minute
m 1-digit or 2-digit minute
mm 2-digit minute
s 1-digit or 2-digit second
ss 2-digit second
AM/PM AM or PM
am/pm am or pm
A/P A or P
a/p a or p

Example 'Example of the FormatTime function
dim strTest
strTest = FormatTime("6:32:05 PM", "HH:MM:SS")
'Result: strTest contains "18:32:05"

See Also FormatTimeN, FormatDate, FormatDateN

FormatTimeN(Number, FormatString)
Formats a time value according to the format expression.

Satellite Forms 8
Development Guide

372

FREXPFRAC

FREXPINT

Function

Parameters Number
FormatString

The time to be formatted.
A string describing the way in which the time string should be
formatted.

Return Value String containing the time fomatted to the specified appearance.
Comments FormatTime requires the Strings extension. The Number must be the time in

the system time format (number of seconds since midnight) as returned by
GetSysTime or TimeToSysTime. See FormatTime for formatting details.

Example 'Example of the FormatTimeN function
dim strTest
strTest = FormatTimeN(125, "HH:MM:SS")
'Result: strTest contains "00:02:05"

See Also FormatTime, FormatDate, FormatDateN

FREXPFRAC(x)
Breaks given value into normalized fraction and an integral power of 2. Returns the fractional
value.
Parameter x The number to raise to the integral power of 2.
Return Value The fractional value resulting from the equation.
Comments Requires the Math extension.
Example 'Example of FREXPFRAC(x)

Dim z
Dim x
x = 4.67
z = FREXPFRAC(x)

FREXPINT(x)
Breaks given value into normalized fraction and an integral power of 2. Returns the integer
value.
Parameter x The number to raise to the integral power of 2.
Return Value The integer value resulting from the equation.
Comments Requires the Math extension.
Example 'Example of FREXPINT(x)

Dim z
Dim x
x = 4.67
z = FREXPINT(x)

Function name [(arglist)]
Defines a global script function that can take optional parameters, perform your user-defined
statements, and returns a result. Global functions are available to all forms and scripts in your
application.
Parameters optional

arguments
Return Value Value defined by the function.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

373

GetAppCreator

GetAppName

Comments Applies to the entire application. In the Global script section of the application
property explorer window, there are two Global Funcs & Subs sections,
labeled (shared) and (private). The (shared)section allows you to write global
scripts that are shared between all platform targets in the application, for
example a Palm target and a Pocket PC 2003 target.The (private) section
allows you to write global scripts that exist in the current target only, so that
you may have script that apply to the current target platform only. This enables
you to have common code between targets in the (shared) section, and
platform-specific code in the (private) section. One common use for this
capability is to set a global variable to a specific value that indicates which
platform your application is running on, thus enabling formlevel scripts to take
appropriate action based on the current platform target.

Example Function name [(arglist)]
[statements]
[name = expression]
[exit]
[statements]
[name = expression]
End Function

Remarks
• You can define local variables using the Dim keyword. The value of local variables in a Function is not

preserved between calls to the routine.
• You cannot define a nested subroutine within a Sub or a Function.
• You can call a subroutine using its name and its variable. Unlike Visual Basic, you do not need to use the

keyword Call.
• Unlike Visual Basic, the Exit keyword cannot be fully qualified. In Visual Basic, you have to use Exit

Sub to exit the routine.
• Functions and subroutines can call themselves repeatedly (recursive). Do so cautiously because excessive

recursion can lead to stack overflow.

See Also Sub

GetAppCreator
Returns a string containing the application’s 4-character creatorID.
Parameter None
Return Value The application’s 4-character creatorID string.
Comments GetAppCreator is a method of the App object. This is useful for any

instance in which you need to know the application’s 4-character creatorID
string. This may be useful if your app needs to contruct a path to a file, in which
the creatorID is a component of the filename (for example a table PDB file
belonging to the app).

Example 'Example of GetAppCreator output
'SMS5

See Also GetAppName, GetAppPath, GetAppVersion

GetAppName
Returns a string containing the name of the application as defined in the project properties.
Parameter None
Return Value The application name string.

Satellite Forms 8
Development Guide

374

GetAppPath

GetAppVersion

GetColor

Comments GetAppName is a method of the App object. This is useful for any instance in
which you need to know the application name, for example in displaying app
name and version information to the user.

Example 'Example of GetAppName output
'My Super App

See Also GetAppCreator, GetAppPath, GetAppVersion

GetAppPath
Returns a string containing the folder path in which the application resides on the PocketPC
device.
Parameter None
Return Value The folder path in which the application resides on the PocketPC device.
Comments GetAppPath is a method of the App object. This is useful for any instance in

which you need to know the path to a file, for example the path to an image file
used for the ShowImage control, or a BMP file created by the InkHelper
extension, or another application for the SysUtils SU_LaunchApp function, etc.
The use of the GetAppPath function to get the application's folder path enables
your code that relies on files paths to keep working without modification even if
your application is moved to a different folder (for example to an external
memory card folder). On the PalmOS platform, this function returns a blank
string, because the PalmOS does not use a folder-based (hierarchical) file
system.

Example 'Example of GetAppPath output
'\My Documents\MyApp\

See Also GetAppName, GetAppCreator, GetAppVersion

GetAppVersion
Returns a string containing the application major and minor version numbers.
Parameter None
Return Value The application version number as a string in the format MMmm.
Comments GetAppVersion is a method of the App object. This is useful for any

instance in which you need to know the major and minor version numbers of
your application, as defined in the project properties. This may be useful if your
app needs to contruct a path to a file that includes the version number as a
component of the filename (for example a table PDB file belonging to the app).

Example 'Example of GetAppVersion output
'0201

See Also GetAppName, GetAppPath, GetAppCreator

GetColor(ForeOrBack)
Returns the colors currently in use.
Parameter ForeOrBack Set to 0 to retrieve the foreground color; set to 1 to retrieve the

background color; set to 2 to retrieve the text color.
Return Value The 8-bit color value for the specified color.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

375

GetCurrentColor

GetCurrentRGBColors

GetEngineVersion

GetFillColor

Comments Applies only to the Color Graphics extension.
Example 'Example of GetColor(ForeOrBack)

Dim x
x = GetColor(0)

GetCurrentColor(Color)
Specifies how often the OnClick event fires.
Parameter Color 1 = Return foreground color.

2 = Return background color.
Return Value The specified color value.
Comments Applies only to the Color Slider control.
Example 'Example of GetCurrentColor(Colors)

Dim x
x = GetCurrentColor(1)

GetCurrentRGBColors(ForeOrBack)
Returns a text string containing the current red, green, and blue colors.
Parameter ForeOrBack Set to 0 to retrieve the foreground color; set to 1 to retrieve the

background color; set to 2 to retrieve the text color.
Return Value The RGB color value for the specified color.
Comments Applies only to the Color Graphics extension.
Example 'Example of GetCurrentRGBColors(ForeOrBack)

Dim sRGB
sRGB = GetCurrentRGBColors(0)

GetEngineVersion
Returns the version number of the runtime engine as a string using MM.mm.ii.bbb format. The
MM in this format represents the major version number, the mm represents minor version, ii
represents the internal version, and the bbb represents the build number.
Parameter None
Return Value The current runtime engine version number string.
Comments GetEngineVersion is a method of the App object.
Example 'Example of GetEngineVersion output

'6.1.0.010

GetFillColor()
Returns the Fill color.
Parameters None
Return Value The current Fill color value.
Comments Applies only to the Graphics and Color Graphics extensions.
Example 'Example of GetFillColor()

Dim x
x = GetFillColor()

Satellite Forms 8
Development Guide

376

GetFocus

GetIndex

GetLastKey

GetPenColor

Forms(FormName).GetFocus
Returns the index of the control that has the focus using %Fnnn.Cnnn format or “” if no control
has focus. The F in this format represents form, the C represents control, and the nnn
represents the index.
Parameter FormName Name of a form.
Return Value None
Comments GetFocus is a method of the Form object.

Extension.GetIndex()
Returns the index of the current control.
Parameters None
Return Value None
Comments Applies only to the Bar Code Reader and Symbol Integrated Scanner

extensions.
Example 'Example of GetIndex()

Dim x
x = BarCode1.GetIndex()

GetLastKey(ASCII_Char, VirtualKeyCode, Modifiers)
Returns the last key the user pressed.
Parameters ASCII_Char

VirtualKeyCode
Modifiers

ASCII code of the last character entere, or zero if the key
pressed was a virtual key code, such as the Find key.
Virtual key code of the last character entered.
Modifiers of the last character entered.

Return Value None
Comments GetLastKey is a method of the App object. The last key entered can be one

of the plastic buttons, one of the silk-screened buttons, or a Graffiti stroke. Call
this function from within the OnKey event handler to intercept a user’s
keystrokes or button presses. To consume the key, use Fail to exit from
OnKey. To allow the key to be processed by the handheld device OS, use
Exit.
For a list of ASCII and Virtual Key codes, see the Palm OS SDK
documentation.
Modifiers can take the following values:
Shift Key & H01
Caps Lock &H02
Num Lock &H04
Command Key &H08
Auto-Repeat &H40
Power On &H100

GetPenColor()
Returns the Pen color.
Parameters None

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

377

GetPenStatus

GetPosition

GetRecordAdvMode

Return Value The current Pen color value.
Comments Applies only to the Graphics and Color Graphics extensions.
Example ‘Example of GetPenColor()

Dim x
x = GetPenColor()

GetPenStatus(x,y)
Indicates whether the stylus is touching the screen and the x, y coordinates if it is.
Parameters X

Y
On return, contains the x coordinate of stylus position.
On return, contains the y coordinate of the stylus position.

Return Value TRUE if the stylus is touching the screen; FALSE if it is not.
Comments GetPenStatus is a method of the App object. If it returns TRUE, the x and y

coordinates are valid; otherwise, they are undefined.

Controls(ControlName).GetPosition(cX, cY, cW, cH)
Returns the current position (cX, cY) and size (cW, cH) of a control.
Parameters ControlName

cX
cY
cW
cH

Name of a control.
On return, contains the top left X coordinate of the control.
On return, contains the top left Y coordinate of the control.
On return, contains the width of the control.
On return, contains the height of the control.

Return Value None, the location and size values are returned in the cW, cY, cW, and cH
parameter variables.

Comments GetPosition is a method of the Control object. This method is useful when
combined with the new Dynamic Input Area support for PalmOS that enables
you to move and resize controls on a form in response to changes in the form
size or orientation.

Example 'example of control GetPosition and SetPosition methods
Dim cX, cY, cW, cH
'obtain the current location and size of Button1
Button1.GetPosition(cX, cY, cW, cH)
'move Button1 control down 10 pixels, right 10 pixels
'and widen by 5 pixels, increase height by 5 pixels
Button1.SetPosition(cX+10, cY+10, cW+5, cH+5)

See Also SetPosition

Extension.GetRecordAdvMode()
Returns the Record Advance Mode setting.
Parameters None
Return Value The current Record Advance Mode setting:

0=Off
1=Always Create (Bar Code Reader); On (Symbol Integrated Scanner)
2=Create At End (Bar Code Reader); Always Create (Symbol Integrated
Scanner)
3=On (Bar Code Reader); Create At End (Symbol Integrated Scanner)

Satellite Forms 8
Development Guide

378

GetScan

GetScreenHeight

GetScreenSize

GetScreenWidth

Comments Applies only to the Bar Code Reader and Symbol Integrated Scanner
extensions.

Example 'Example of GetRecordAdvMode()
Dim x
x = BarCode1.GetRecordAdvMode()

Extension.GetScan(timeout)
Returns a string of scanned data.
Parameter timeout Set to 0 to clear the scan buffer. Must be set to 0 for Symbol

Integrated Scanner.
Return Value None
Comments Applies only to the Bar Code Reader and Symbol Integrated Scanner

extensions. You must call EnableScanner before using this method with the
Symbol Integrated Scanner, otherwise a fatal exception may occur.

Example 'Example of GetScan(timeout)
BarCode1.GetScan(0)

See Also EnableScanner

GetScreenHeight()
[Pocket PC only.] Return screen height in pixels.
Parameter None
Return Value Screen height in pixels.
Comments Requires the ScreenSize extension for Pocket PC.
Example 'Example of GetScreenHeight

MsgBox("Screen height is " &GetScreenHeight &" pixels.")

See Also

GetScreenSize()
[Pocket PC only.] Return screen dimensions in string WWWxHHH.
Parameter None
Return Value Screen dimensions (pixels) in string WWWxHHH
Comments Requires the ScreenSize extension for Pocket PC.
Example 'Example of GetScreenSize

MsgBox("Screen dimensions are " &GetScreenSize)

See Also

GetScreenWidth()
[Pocket PC only.] Return screen width in pixels.
Parameter None
Return Value Screen width in pixels.
Comments Requires the ScreenSize extension for Pocket PC.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

379

GetSelection

GetSysDate

GetSysTime

Example 'Example of GetScreenWidth
MsgBox("Screen width is " &GetScreenWidth &" pixels.")

See Also

Controls(ControlName).GetSelection(StartSel, EndSel)
The GetSelection method is available only for Paragraph and Edit controls. It retrieves the
start and end offsets of the highlighted text in the control.
Parameters ControlName

StartSel
EndSel

Name of control.
Offset to beginning of selection.
Offset to end of selection.

Return Value None
Comments GetSelection is a method of the Control object (Paragraph and Edit

controls only). The selection is returned in the parameters StartSel and
EndSel, both of which must be variables. StartSel contains the offset of the
beginning of the selection. The offset of the first character in a control is 0.
EndSel contains the offset to the character following the end of the selection.
For example, if a control contains a string “ABCD” and the user highlights the
“BC” portion, this method returns StartSel = 1 and EndSel = 3. If StartSel is the
same as EndSel, no text is highlighted.

GetSysDate
Returns the number of days since January 1, 1904.
Parameters None
Return Value Days since January 1, 1904
Comments GetSysDate is a method of the App object.
Example 'Example of the GetSysDate method

'OutputA and Output B are edit controls.
'Sample output is 38899.
OutputA = GetSysDate
'Sample output is 07/02/10.
OutputB = SysDateToDate(GetSysDate)

See Also GetSysTime, SysDateToDate, DateToSysDate

GetSysTime
Returns the number of seconds since 12:00 AM on January 1, 1904.
Parameters None
Return Value Seconds since 12 a.m. January 1, 1904
Comments GetSysTime is a method of the App object.
Example 'Example of the GetSysTime method

'OutputA and Output B are edit controls.
'Sample output is -1327064373.
OutputA = GetSysTime
'Sample output is 10:36:20 pm.
OutputB = SysTimeToTime(GetSysTime)

See Also GetSysDate, SysTimeToTime, TimeToSysTime

Satellite Forms 8
Development Guide

380

GetTickCount

GetTickFrequency

GetUserID

GetUserName

GPS_CalcDistance

GetTickCount
Returns the number of timer ticks since the handheld device was last reset. Ticks do not
advance when the device is off.
Parameters None
Return Value Number of timer ticks since the handheld was last reset.
Comments GetTickCount is a method of the App object.
See Also KillTimer, SetTimer, GetTickFrequency

GetTickFrequency
Returns the frequency of the timer ticks.
Parameters None
Return Value Number of ticks per second.
Comments GetTickFrequency is a method of the App object.
See Also KillTimer, SetTimer, GetTickCount

GetUserID
Returns the Satellite Forms-assigned unique user ID of the handheld device.
Parameters None
Return Value Satellite Forms-assigned unique user ID of the handheld device.
Comments GetUserID is a method of the App object.
Example 'Example of GetUserID method

'OutputA is an edit control.
OutputA = GetUserID

GetUserName
Returns the Satellite Forms-assigned unique user name of the handheld device.
Parameters None
Return Value Satellite Forms-assigned unique user name of the handheld device.
Comments GetUserName is a method of the App object.
Example 'Example of GetUserName method

'OutputA is an edit control.
OutputA = GetUserName

GPS_CalcDistance(Lat1, Lon1, Lat2, Lon2)
Calculate the distance in metres between two GPS waypoints.
Parameters Lat1 Latitude in decimal degrees of first waypoint.

Lon1 Longitude in decimal degrees of first waypoint.
Lat2 Latitude in decimal degrees of second waypoint.
Lon2 Longitude in decimal degrees of second waypoint.

Return Value Returns the distance in metres between two waypoints.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

381

GPS_CloseGPS

GPS_GetPosLatitude

Comments GPS_CalcDistance requires the GPS extension. Use GPS_HasGPSAPI
function to determine if current device supports GPS functions. Latitudes
and longitudes must be supplied in decimal degrees, which is the same
format as returned by the GPS_GetPosLatitude and
GPS_GetPosLongitude functions. Positive latitude indicates N, and
negative latitude indicates S. Positive longitude indicates E, and negative
longitude indicates W.

Example 'Example of GPS_CalcDistance method
'Canyon campground in Yellowstone National Park
edLat1 = 44.735300
edLon1 = -110.488083
'Bridge Bay campground in Yellowstone National Park
edLat2 = 44.534500
edLon2 = -110.436967
'Distance in metres between the two campgrounds
edDistance = GPS_CalcDistance(edLat1, edLon1, edLat2, edLon2)

See Also GPS_CloseGPS, GPS_GetPosLatitude, GPS_GetPosLongitude,
GPS_GetPosOther, GPS_GetPosUTCTime, GPS_GetValidFields,
GPS_HasGPSAPI, GPS_OpenGPS

GPS_CloseGPS()
Close connection to GPS receiver, powering down GPS receiver if no other tasks are also
using it.
Parameters None
Return Value Returns 0 if no error, or error code if GPS conection could not be opened.
Comments GPS_CloseGPS requires the GPS extension. Use GPS_HasGPSAPI

function to determine if current device supports GPS functions. Call
GPS_CloseGPS when you are done using the GPS in your application, to
conserve power.

See Also GPS_CalcDistance, GPS_GetPosLatitude, GPS_GetPosLongitude,
GPS_GetPosOther, GPS_GetPosUTCTime, GPS_GetValidFields,
GPS_HasGPSAPI, GPS_OpenGPS

GPS_GetPosLatitude(maxdataage)
Get Latitude in decimal degrees from GPS position data.
Parameters maxdataage Maximum age in milliseconds of GPS data that you will

accept as current. If the data is older than that, it will be
considered invalid.

Return Value Returns 0 if no valid data, -1 if the GPS connection has not been opened,
or latitude data in decimal degrees. Positive numbers indicate North
latitude, negative numbers indicate South latitude.

Comments GPS_GetPosLatitude requires the GPS extension. Use GPS_HasGPSAPI
function to determine if current device supports GPS functions.

Example 'Example of GPS_GetPosLatitude function
edLat = GPS_GetPosLatitude(edMaxDataAge)

See Also GPS_CalcDistance, GPS_CloseGPS, GPS_GetPosLongitude,
GPS_GetPosOther, GPS_GetPosUTCTime, GPS_GetValidFields,
GPS_HasGPSAPI, GPS_OpenGPS

Satellite Forms 8
Development Guide

382

GPS_GetPosLongitude

GPS_GetPosOther

GPS_GetPosLongitude(maxdataage)
Get Longitude in decimal degrees from GPS position data.
Parameters maxdataage Maximum age in milliseconds of GPS data that you will

accept as current. If the data is older than that, it will be
considered invalid.

Return Value Returns 0 if no valid data, -1 if the GPS connection has not been opened,
or longitude data in decimal degrees. Positive numbers indicate East
longitude, negative numbers indicate West longitude.

Comments GPS_GetPosLongitude requires the GPS extension. Use
GPS_HasGPSAPI function to determine if current device supports GPS
functions.

Example 'Example of GPS_GetPosLongitude function
edLon = GPS_GetPosLongitude(edMaxDataAge)

See Also GPS_CalcDistance, GPS_CloseGPS, GPS_GetPosLatitude,
GPS_GetPosOther, GPS_GetPosUTCTime, GPS_GetValidFields,
GPS_HasGPSAPI, GPS_OpenGPS

GPS_GetPosOther(maxdataage, otherdatatype)
Get other GPS position data, indicated by other information type.
Parameters maxdataage Maximum age in milliseconds of GPS data that you will

accept as current. If the data is older than that, it will be
considered invalid.

otherdatatype Index of other data type to obtain (see Comments for list).
Return Value Returns 0 if no valid data, -1 if the GPS connection has not been opened,

or requested data value.
Comments GPS_GetPosLatitude requires the GPS extension. Use GPS_HasGPSAPI

function to determine if current device supports GPS functions. The list of
other data types and their index numbers is shown below.
1 UTC_TIME
2 LATITUDE
4 LONGITUDE
8 SPEED
16 HEADING
32 MAGNETIC_VARIATION
64 ALTITUDE_WRT_SEA_LEVEL
128 ALTITUDE_WRT_ELLIPSOID
256 POSITION_DILUTION_OF_PRECISION
512 HORIZONTAL_DILUTION_OF_PRECISION
1024 VERTICAL_DILUTION_OF_PRECISION
2048 SATELLITE_COUNT
4096 SATELLITES_USED_PRNS
8192 SATELLITES_IN_VIEW
16384 SATELLITES_IN_VIEW_PRNS
32768 SATELLITES_IN_VIEW_ELEVATION
65536 SATELLITES_IN_VIEW_AZIMUTH
131072 SATELLITES_IN_VIEW_SIGNAL_TO_NOISE_RATIO
1048576 GPS_FIX_QUALITY

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

383

GPS_GetPosUTCTime

GPS_GetValidFields

2097152 GPS_FIX_TYPE
4194304 GPS_FIX_SELECTION

Example 'Example of GPS_GetPosOther function to get current speed
speed = GPS_GetPosOther(8)

See Also GPS_CalcDistance, GPS_CloseGPS, GPS_GetPosLatitude,
GPS_GetPosLongitude, GPS_GetPosUTCTime, GPS_GetValidFields,
GPS_HasGPSAPI, GPS_OpenGPS

GPS_GetPosUTCTime(maxdataage)
Get UTC Time from GPS position data.
Parameters maxdataage Maximum age in milliseconds of GPS data that you will

accept as current. If the data is older than that, it will be
considered invalid.

Return Value Returns 0 if no valid data, -1 if the GPS connection has not been opened,
or or UTC Time value in system time format.

Comments GPS_GetPosUTCTime requires the GPS extension. Use
GPS_HasGPSAPI function to determine if current device supports GPS
functions. UTCtime is in SatForms system time format which is seconds
since 00:00 Jan 1, 1904. That value can be converted into both a date and
a time, as shown in the example below.

Example 'Example of GPS_GetUTCTime function
'we can retrieve both the date and time from that value
'this value is a signed 32 bit integer and can be negative
'so for date we convert to a positive by adding 2 ^ 32 to
'the returned value and converting that from seconds into
'days (divide secs by 86400 secs/day)
dim UTCtime, UInt32MAX
'2 ^ 32 = max size of 32 bit unsigned integer
UInt32MAX = 4294967296
UTCtime = GPS_GetPosUTCTime(edMaxDataAge)
edStatus = "GetPosUTCTime = " &UTCTime
if (UTCTime <> 0) and (UTCTime <> -1) then

'convert to user readable date and time
edDate = SysDateToDate((UTCTime + UInt32MAX) / 86400)
edTime = SysTimeToTime(UTCTime)

else
edDate = 0
edTime = 0

endif

See Also GPS_CalcDistance, GPS_CloseGPS, GPS_GetPosLatitude,
GPS_GetPosLongitude, GPS_GetPosOther, GPS_GetValidFields,
GPS_HasGPSAPI, GPS_OpenGPS

GPS_GetValidFields(maxdataage)
Check whether GPS is returning valid position data.
Parameters maxdataage Maximum age in milliseconds of GPS data that you will

accept as current. If the data is older than that, it will be
considered invalid.

Satellite Forms 8
Development Guide

384

GPS_HasGPSAPI

GPS_OpenGPS

Return Value Returns 0 if no valid position data fields, -1 if the GPS connection has not
been opened, or positive value indicating which fields have valid data
(each field represented by a bitfield value). The bitfield values are the
same as those listed in the GPS_GetPosOther reference.

Comments GPS_GetValidFields requires the GPS extension. Use GPS_HasGPSAPI
function to determine if current device supports GPS functions.

Example 'Example of GPS_GetValidFields function
'Check if Speed value is valid
dim k_Speed, valid
k_Speed = 8
valid = GPS_GetValidField(edMaxDataAge)
if valid and k_Speed = true then

MsgBox(“Speed data is valid!”)
endif

See Also GPS_CalcDistance, GPS_CloseGPS, GPS_GetPosLatitude,
GPS_GetPosLongitude, GPS_GetPosOther, GPS_GetPosUTCTime,
GPS_HasGPSAPI, GPS_OpenGPS

GPS_HasGPSAPI()
Check whether the current device has the Windows Mobile GPS API.
Parameters None
Return Value Returns True if device has GPS API, or False if not. Windows Mobile

version 5 and higher devices should have the GPS API, but older versions
and Windows CE devices do not.

Comments GPS_HasGPSAPI requires the GPS extension. Use GPS_HasGPSAPI
function to determine if current device supports GPS functions.

Example 'Example of GPS_HasGPSAPI function
if not GPS_HasGPSAPI then

MsgBox(“Device does not have GPS API”)
endif

See Also GPS_CalcDistance, GPS_CloseGPS, GPS_GetPosLatitude,
GPS_GetPosLongitude, GPS_GetPosOther, GPS_GetPosUTCTime,
GPS_GetValidFields, GPS_OpenGPS

GPS_OpenGPS()
Opens connection to GPS receiver, powering up GPS receiver if necessary.
Parameters None
Return Value Returns 0 if no error, or error code if GPS conection could not be opened.
Comments GPS_OpenGPS requires the GPS extension. Use GPS_HasGPSAPI

function to determine if current device supports GPS functions. Call
GPS_OpenGPS when you start using the GPS in your application, before
calling other functions to retrieve data fields. Remember to call
GPS_CloseGPS when done using it, to conserve power.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

385

HexStringFromInt

If … Then

Example 'Example of GPS_OpenGPS function
dim result
if GPS_HasGPSAPI then

result = GPS_OpenGPS
if result = 0 then

g_GPSOpen = true
MsgBox(“GPS Opened!”)

endif
else

MsgBox(“Device does not have GPS”)
endif

See Also GPS_CalcDistance, GPS_CloseGPS, GPS_GetPosLatitude,
GPS_GetPosLongitude, GPS_GetPosOther, GPS_GetPosUTCTime,
GPS_GetValidFields, GPS_HasGPSAPI

HexStringFromInt(value)
Converts an integer value to a hexadecimal string.
Parameter Value Integer value to be converted to a hexadecimal string.
Return Value Hexadecimal string.
Comments HexStringFromInt requires the Strings extension.
Example 'Example of HexStringFromInt

Dim hexvalstr
hexvalstr = HexStringFromInt(54321)
'Result: hexvalstr contains “D431”

See Also Int, IntFromHexString, Float, Str, Bool

If Condition1 Then
 Statement1
[ElseIf] [Condition2] [Then]
 [Statement2]
[Else]
 [Statement3]
EndIf

If Condition Then Statement1 : [Statement2]
Execute different statements conditionally.
Parameters Condition1

Statement1
Condition2
Statement2
Statement3

First condition to be evaluated.
Commands to execute if Condition1 evaluates to TRUE.
Condition to evaluate if Condition1 evaluates to FALSE.
Commands to execute if Condition2 evaluates to TRUE.
Commands to execute if Conditions1 and 2 evaluate to FALSE.

Return Value None

Satellite Forms 8
Development Guide

386

ILOGB

IH_BMPColorSettings

Comments There are two ways to construct If ...Then statements: the block format
and the single-line format.
The first usage example above illustrates the block format. In this example, if
Condition1 evaluates to TRUE, Statement1 executes and the If statement exits
without evaluating Condition2. If Condition1 evaluates to FALSE, Condition2 is
evaluated. If Condition2 evaluates to TRUE, Statement2 executes and the If
statement exits. If Condition2 evaluates to FALSE, Statement3 executes and
the If statement exits.
Using the block format, you can nest multiple If statements. The ElseIf
and Else clauses are optional. Each If statement can have multiple ElseIf
clauses, but only a single Else clause.
The second usage example above illustrates the simplified single-line format.
In this example, if Condition evaluates to TRUE, the Then clause executes. If
Condition evaluates to FALSE, the Then clause does not execute. Multiple
statements can be included in the Then clause by separating each statement
with a colon.

Example 'Example of using the If statement
'InputA and InputB are edit controls.
If Float(InputA) > Float(InputB) Then

MsgBox("The greater number is " & InputA)
ElseIf Float(InputB) > Float(InputA) Then

MsgBox("The greater number is " & InputB)
Else

MsgBox("The two numbers are equal")
EndIf

ILOGB(x)
Binary exponent of non-zero x. Returns an integer.
Parameter x The number to raise to the binary exponent.
Return Value The integer value resulting from the equation.
Comments Requires the Math extension.
Example 'Example of ILOGB(x)

Dim z
Dim x
x = 4
z = ILOGB(x)

IH_BMPColorSettings(fgRed, fgGreen, fgBlue, bgRed, bgGreen, bgBlue)
Set foreground and background colors for monochrome BMP file.
Parameters fgRed

fgGreen
fgBlue
bgRed
bgGreen
bgBlue

red component of RGB value for foreground color
green component of RGB value for foreground color
blue component of RGB value for foreground color
red component of RGB value for background color
green component of RGB value for background color
blue component of RGB value for background color

Return Value None

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

387

IH_DeleteFile

IH_FileToBinField

Comments Requires the InkHelper extension. This method enables you to specify desired
foreground & background colors for the BMP file created with
IH_InkFieldToBitmap function. Its primary use is to allow you to invert BMP
colors to work around a bitmap printing bug with PrintBoy on Windows Mobile 5
devices. The default color settings if none are specified are: fgRed = 0,
fgGreen = 0, fgBlue = 0 [foreground = black], bgRed = 255, bgGreen = 255,
bgBlue = 255 [background = white].

Example 'Example of IH_BMPColorSettings method
'Invert colors for printing with PrintBoy on WM5 devices
'use fgRed = 255, fgGreen = 255, fgBlue = 255 (white)
'and bgRed = 0, bgGreen = 0, bgBlue = 0 (black)
IH_BMPColorSettings(255, 255, 255, 0, 0, 0)

See Also IH_InkFieldToBitmap

IH_DeleteFile(Filename)
Delete the specified file.
Parameters Filename Name of file to delete.
Return Value If the file was deleted, returns 0, else returns 1 to indicate an error.
Comments Requires the InkHelper extension. For Palm OS internal memory files, do not

use any path, just the case sensitive filename. For Pocket PC files and Palm
OS external memory files, specify the full path and name of the file to be
deleted. This function is provided for deleting BMP files created with
IH_InkFieldToBitmap, but can be used to delete any file that is not currently
open and in use.

Example 'Example of IH_DeleteFile function
Dim result, filename, filepath
filename = “SIGNATURE1.BMP”
If g_Platform = “PALMOS” then

filepath = “”
Else

filepath = “\My Documents\My App\”
EndIf
result = IH_DeleteFile(filepath & filename)

See Also IH_InkFieldToBitmap

IH_FileToBinField(Filename, Tables(TableName).Fields(InkFieldName).Index, row)
Import a file into a binary field.
Parameters Filename

TableName
InkFieldName
row

Path and name of file to import.
Name of table.
Name of ink field.
Row number of table record.

Return Value If the file was imported, returns 0, else returns 1 to indicate an error.
Comments Requires the InkHelper extension. For Palm OS internal memory files, do not use any

path, just the case sensitive filename. For Pocket PC files and Palm OS external memory
files, specify the full path and name of the file to be imported. It is intended for use with
BMP files but can be used for any file (for PalmOS internal memory files, only streamed
databases such as BMP files created with IH_InkFieldToBitmap are supported, not
regular PRC/PDB databases). This is useful when you want to access a file created on
the handheld in your server database, with the file stored in a table binary field. The
binary field specified should NOT be the ink binary field.

Satellite Forms 8
Development Guide

388

IH_FileToHexText

IH_FileToUUEText

Example 'Example of IH_FileToBinField function
dim row, strFilename, result
strFilename = GetAppPath & edName
result = IH_FileToBinField(strFilename,
Tables("tInkdata").Fields("Binfile").Index, Forms().CurrentRecord)
If (result <> 0) Then

MsgBox("IH_FileToBinField error:" &result)
EndIf

See Also IH_InkFieldToBitmap, IH_InkFieldToHexText, IH_FileToHexText

IH_FileToHexText(Filename)
Return the contents of a file as HexText.
Parameters Filename Name of file to convert into HexText.
Return Value String containing the HexText representation of the file.
Comments Requires the InkHelper extension. For Palm OS internal memory files, do not use any

path, just the case sensitive filename. For Pocket PC files and Palm OS external
memory files, specify the full path and name of the file to be converted. It is intended for
use with BMP files but can be used for any file (for PalmOS internal memory files, only
streamed databases such as BMP files created with IH_InkFieldToBitmap are supported,
not regular PRC/PDB databases). HexText is an ASCII text representation of binary
data, in which the hexadecimal value of each binary byte is converted to 2 ASCII
characters that indicate the binary hex value. For example, the single binary byte 0xA5 is
represented in HexText as the ASCII string “A5”. When the binary data is converted into
HexText, it can then be transported via methods that only support plain text (for example
using TCPIP sockets via the Internet or Winsock extensions, or POSTing to a web server
using HTTP). The HexText can then be converted back into binary form on the
destination/host system, for example converting the HexText back into a standard BMP
file.

Example 'Example of IH_FileToHexText function
Dim hextext, filename, filepath
filename = “SIGNATURE1.BMP”
If g_Platform = “PALMOS” then

filepath = “”
Else

filepath = “\My Documents\My App\”
EndIf
hextext = IH_FileToHexText(filepath & filename)

See Also IH_InkFieldToBitmap, IH_InkFieldToHexText, IH_FileToUUEText

IH_FileToUUEText(Filename)
Return the contents of a file as uuencoded ASCII text.
Parameters Filename Name of file to convert into uuencoded ASCII text.
Return Value String containing the uuencoded text representation of the file.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

389

IH_InkFieldToBitmap

Comments Requires the InkHelper extension. For Palm OS internal memory files, do not use any
path, just the case sensitive filename. For Pocket PC files and Palm OS external
memory files, specify the full path and name of the file to be converted. It is intended for
use with BMP files but can be used for any file (for PalmOS internal memory files, only
streamed databases such as BMP files created with IH_InkFieldToBitmap are supported,
not regular PRC/PDB databases). Uuencoded text is a 7-bit ASCII text representation of
8-bit binary data, in standard use for many years on the Internet. When the binary data is
converted into uuencoded text, it can then be transported via methods that only support
plain text (for example using TCPIP sockets via the Internet or Winsock extensions, or
POSTing to a web server using HTTP). The uuencoded text can then be converted back
into binary form on the destination/host system, for example converting the text back into
a standard BMP file.

Example 'Example of IH_FileToUUEText function
Dim uuetext, filename, filepath
filename = “SIGNATURE1.BMP”
If g_Platform = “PALMOS” then

filepath = “”
Else

filepath = “\My Documents\My App\”
EndIf
uuetext = IH_FileToUUEText(filepath & filename)

See Also IH_InkFieldToBitmap, IH_InkFieldToHexText, IH_FileToHexText

IH_InkFieldToBitmap(Tables(TableName).Fields(InkFieldName).Index, row,
BMPfilename)
Save the contents of an ink field to a BMP file.
Parameters TableName

InkFieldName
row
BMPfilename

Name of table.
Name of ink field.
Row number of table record.
Name of BMP file to create.

Return Value If the BMP file was created, returns 0, else returns a numeric error code.
Comments Requires the InkHelper extension. For Palm OS internal memory files, do not

use any path, just the case sensitive filename. For Pocket PC files and Palm
OS external memory files, specify the full path and name of the file to be
deleted. This function enables you to convert ink images (eg. signatures,
sketches) into the standard BMP format for easy use with other software,
including printing from the handheld. The IH_InkFieldToBitmap and
IH_InkFieldToHexText functions work with ink data that is saved in a table field,
not with ink data that is in a form control. Thus, if you are wanting to convert ink
from the current form control, you must save that ink control data to the table
first. To do that, use Forms().Refresh, or simply access the table field after the
form data has been saved to the table by moving to a new record, new form,
new page, etc.

Satellite Forms 8
Development Guide

390

IH_InkFieldToHexText

IH_PalmFileSettings

Example 'Example of IH_InkFieldToBitmap function
Dim result, filename, filepath
filename = “SIGNATURE” &Str(Forms().CurrentRow) &”.BMP”
If g_Platform = “PALMOS” then

filepath = “”
Else

filepath = “\My Documents\My App\”
EndIf
result = IH_InkFieldToBitmap(Fields(“Signature”).index,
Forms().CurrentRow, filepath & filename)

See Also IH_BMPColorSettings, IH_DeleteFile, IH_FileToHexText, IH_FileToUUEText,
IH_InkFieldToHexText

IH_InkFieldToHexText(Tables(TableName).Fields(InkFieldName).Index, row)
Return the contents of an ink field as HexText.
Parameters TableName

InkFieldName
row

Name of table.
Name of ink field.
Row number of table record.

Return Value String containing the HexText representation of the ink field binary data.
Comments Requires the InkHelper extension. For Palm OS internal memory files, do not use any

path, just the case sensitive filename. For Pocket PC files and Palm OS external
memory files, specify the full path and name of the file to be deleted. This function
enables you to convert ink images (eg. signatures, sketches) in SatForms binary ink
format into HexText. HexText is an ASCII text representation of binary data, in which the
hexadecimal value of each binary byte is converted to 2 ASCII characters that indicate
the binary hex value. For example, the single binary byte 0xA5 is represented in HexText
as the ASCII string “A5”. When the binary data is converted into HexText, it can then be
transported via methods that only support plain text (for example using TCPIP sockets
via the Internet or Winsock extensions, or POSTing to a web server using HTTP). The
HexText can then be converted back into binary form on the destination/host system, for
example converting the HexText back into SatForms binary ink format for display in the
Ink View OCX. The IH_InkFieldToBitmap and IH_InkFieldToHexText functions work with
ink data that is saved in a table field, not with ink data that is in a form control. Thus, if
you are wanting to convert ink from the current form control, you must save that ink
control data to the table first. To do that, use Forms().Refresh, or simply access the table
field after the form data has been saved to the table by moving to a new record, new
form, new page, etc.

Example 'Example of IH_InkFieldToHexText function
Dim hextext
hextext = IH_InkFieldToBitmap(Fields(“Signature”).index,
Forms().CurrentRow)

See Also IH_FileToHexText, IH_InkFieldToBitmap

IH_PalmFileSettings(volumenumber, filetype, filecreatorid, filebackup)
Specify PalmOS file settings used for other InkHelper functions that access files.
Parameters volumenumber Specify the volumenumber as: 0 (internal streamed files), or 1

(first VFS volume found), or n (nth VFS volume found), etc.
filetype 4-character case sensitive file type for streamed files
filecreatorid 4-character case sensitive Creator ID for streamed files
filebackup True or False to set the backup bit on streamed files

Return Value None

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

391

Index

InsertionSort

InStr

Comments Requires the InkHelper extension. Palm OS only, not applicable on Pocket PC.
Call this function on PalmOS before the other functions that work with files (eg.
IH_InkFieldToBitmap). The Palm OS uses volume reference numbers to
access external memory cards, which you can specify using the
volumenumber parameter. Set volumenumber to 0 for internal memory files.
The filetype should normally be “strm”. For compatibility with the PalmDataPro
SFInkView conduit, set the filecreatorid to “EWIV”, otherwise use your
application’s Creator ID. If the backup bit is set on BMP files (by setting
filebackup to True), the Palm Backup conduit will back up the BMP files as
streamed file PDBs in the user's Backup folder. You can convert these
streamed file PDBs to standard Windows BMPs using the freeware PAR utility.

Example 'Example of IH_PalmFileSettings method
'using internal memory and SFInkView conduit compatibility
IH_PalmFileSettings(0,“strm”, “EWIV”, false)

See Also IH_InkFieldToBitmap, IH_DeleteFile, IH_FileToHexText, IH_FileToUUEText

Object.Index
Returns the index of an object.
Parameters Object An object.
Return Value Index of object.
Comments Index is a read-only property of the Control object, the Field object, the

Form object, the Extension object, and the Table object. Use the Index
property to pass a reference to a control, field, form, or table to an extension.
For more information, see the Slider SFX Custom control extension in the
Samples\Extensions\Slider\Src directory.

Tables(TableName).InsertionSort(ColumnName, Direction)
Sorts the records in the specified table using the specified column as the key. You may sort in
ascending or descending order.
Parameters TableName

ColumnName
Direction

Name of table.
Name of a column.
Sort order. Use TRUE for ascending and FALSE for
descending.

Return Value None
Comments InsertionSort is a method of the Table object. Using this method

preserves the relative order of the previous sort when you sort twice in a row
on two different keys. For example, you can sort first by NAME and then by
AGE. The result is be a table sorted by AGE and, within the same age groups,
by NAME.

Example 'Example of InsertionSort method
'Sort table by first name.
Tables("MyTable").InsertionSort ("FirstName",TRUE)

See Also QuickSort

InStr(String, Substring, StartPos)
Finds occurrence of one string within another, starting at the specified start position.

Satellite Forms 8
Development Guide

392

Int

Int64

IntFromHexString

Parameters String
SubString
StartPos

String to search within.
SubString to search for in String.
Position in String to start searching at.

Return Value If the substring is not found, returns 0. If found, returns position where found.
Comments Requires the Strings extension.
Example 'Example of InStr function

Dim sPos
sPos = InStr("CDABCDE","CD",3)
'Result: sPos contains 5

Int (Variable)
Converts a value to an integer.
Parameter Variable Floating-point or string value to be converted to an integer.
Return Value Integer value.
Comments Truncates decimal places during conversion.
Example 'Example of Integer Conversion

'InputA, InputB, OutputA, and OutputB are edit controls.
InputB = 2.54
OutputA = Int(InputA)
OutputB = Int(InputB)

See Also Float, Str, Bool, Int64

Int64(Val)
Converts a value to a 64-bit integer.
Parameter Val Floating-point or string value to be converted to a 64-bit integer.
Return Value 64-bit integer value.
Comments Truncates decimal places during conversion.
Example 'Example of Int64 Conversion

'InputA, InputB, OutputA, and OutputB are edit controls.
InputB = 2.54
OutputA = Int64(InputA)
OutputB = Int64(InputB)

See Also Int, Float, Str, Bool

IntFromHexString(HexValStr)
Converts a string of hexadecimal to an integer.
Parameter HexValStr Hexadecimal string value to be converted to an integer.
Return Value Integer value.
Comments IntFromHexString requires the Strings extension.
Example 'Example of IntFromHexString

Dim value
value = IntFromHexString(“AEBD”)
'Result: value contains 44733

See Also HexStringFromInt, Int, Float, Str, Bool

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

393

InvertText

Is16BitCapable

Is35

IsEmpty

InvertText(Strg, X, Y)
Inverts the text at the specified point.
Parameters Strg Text to draw.

X Y-origin of the upper left corner of the text in pixels.
Y X-origin of the upper left corner of the text in pixels.

Return Value None
Comments Applies only to the Graphics and Color Graphics extensions.
Example ‘Example of Invert(Strg, X, Y)

InvertText("I’m here", 40, 40)

See Also DrawText

Is16BitCapable()
Determines whether the handheld device is capable of displaying 16-bit color.
Parameters None
Return Value TRUE (non-zero) if the handheld device supports 16-bit color; FALSE (0) if it

does not.
Comments Applies only to the Color Graphics extension.
Example ‘Example of Is16BitCapable()

Dim b16BitClr
b16BitClr = Is16BitCapable()

Is35()
Checks to see if the current handheld has Palm OS 3.5 or greater.
Parameters None
Return Value TRUE if the handheld has Palm OS 3.5 or greater; FALSE if not.
Comments Applies only to the Color Graphics extension.
Example 'Example of Is35()

Dim bIsROM35
bIsROM35 = Is35()

IsEmpty(x)
Tests a table field or variable for an Empty state.
Parameters None
Return Value None
Comments Applies only to table fields and to variables, but not to controls.

Fields in a new record are always initialized to Empty, which is not equal to ""
(empty string) or 0. New variables are also initialized to Empty. Once you
assign a value to a field or variable, it is no longer Empty. However, you can
make the table field or variable empty again by assigning it to Empty. You can
test whether a field or variable is empty using the IsEmpty(object) keyword.
Caution: Empty and IsEmpty must not be used with controls. Note:
AppDesigner does not currently enforce this rule when compiling your
application, so you need to make sure not to use Empty/IsEmpty with controls!

Satellite Forms 8
Development Guide

394

IsHandheld35

ISINF

KillTimer

LaunchURL

Example 'Example of assigning Empty to a var and testing with IsEmpty
x = Empty
if IsEmpty(x) then msgbox(“x is Empty!”)

'Example of testing a table field with IsEmpty
if IsEmpty(Fields(fieldname)) then msgbox(“Field is empty!”)

See Also Empty

Extension.IsHandheld35()
Checks to see if the current handheld has Palm OS 3.5 or greater.
Parameters None
Return Value TRUE if the handheld has Palm OS 3.5 or greater; FALSE if not.
Comments Applies only to the Color Slider control.
Example 'Example of IsHandheld35()

Dim bIsHH35
bIsHH35 = ColorSlider1.IsHandheld35()

ISINF(x)
Evaluates a number for its relationship to positive or negative infinity.
Parameter x The number to raise to the binary exponent.
Return Value 0 if the specified value is finite or not a number;

+1 if the specified value approaches positive Infinity;
-1 if the specified value approaches negative Infinity.

Comments Requires the Math extension.
Example 'Example of ISINF(x)

Dim z
z = ISINF(x)

KillTimer
Turns off the timer.
Parameters None
Comments KillTimer is a method of the App object.
See Also SetTimer

LaunchURL(strURL)
Launch a specified URL or view local html and image files in the default device web browser.
Parameters strURL String containing full URL of website to launch, or local HTML or

image files to view in the default device web browser.
Return Value Returns 0 if successful, or error code if not.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

395

LBackSp

LBell

LCancel

LCase

Comments Requires the LaunchURL extension.
Example 'Example of LaunchURL

dim strURL, err
strURL = "http://www.satelliteforms.net/"
err = LaunchURL(strURL)

LBackSp()
Sends a Backspace character to the printer.
Parameters None
Return Value None
Comments Requires the Printer extension.
Example 'Example of LBackSp()

LBackSp()

LBell()
Sends a Bell character to the printer.
Parameters None
Return Value None
Comments Requires the Printer extension.
Example 'Example of LBell()

LBell()

LCancel()
Sends a CAN character to the printer.
Parameters None
Return Value None
Comments Requires the Printer extension.
Example 'Example of LCancel()

LCancel()

LCase(string)
Converts string to all lower case.
Parameter string The string to convert to all lower case.
Return Value The input string converted to all lower case.
Comments Requires the Strings extension.
Example 'Example of LCase

Dim strTest
strTest = LCase(“STRING TO CONVERT”)
‘returns “string to convert”

Satellite Forms 8
Development Guide

396

LCondensed

LDDGraphics

LDEXP

LDoubleStrike

LDoubleWidth

LCondensed(Enable)
Sets the printer’s condensed print mode.
Parameter Enable TRUE enables condensed mode; FALSE disables condensed

mode.
Return Value None
Comments Requires the Printer extension.
Example 'Example of LCondensed(Enable)

LCondensed(TRUE)

LDDGraphics(n1, n2)
Sets double density graphics mode for the specified number of following bytes.
Parameters n1

n2 Low-order byte.
Return Value None
Comments Requires the Printer extension.
Example 'Example of LDDGraphics(n1, n2)

LDEXP(x, y)
Calculates exponential (x * 2) to the y.
Parameters x The number to raise to a power of 2.

y The exponenetial value.
Return Value The result of the equation (x * 2)y.
Comments Requires the Math extension.
Example 'Example of LDEXP(x, y)

Dim z
z = LDEXP(x, y)

LDoubleStrike(Enable)
Sets printer’s double strike print mode.
Parameter Enable TRUE enables double strike print mode; FALSE disables double

strike print mode.
Return Value None
Comments Requires the Printer extension.
Example 'Example of LDoubleStrike(Enable)

LDoubleStrike(TRUE)

LDoubleWidth(Enable)
Sets double width mode for noChars characters.
Parameter Enable TRUE enables double width print mode; FALSE disables double

width print mode.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

397

LDoubleWidthN

Left

LEmphasized

Len

LFormFeed

Return Value None
Comments Requires the Printer extension.
Example 'Example of LDoubleWidth(Enable)

LDoubleWidth(TRUE)

LDoubleWidthN(noChars)
Sets double width mode.
Parameter noChars TRUE enables double width print mode; FALSE disables double

width print mode.
Return Value None
Comments Requires the Printer extension.
Example 'Example of LDoubleWidthN(Enable)

LDoubleWidthN(TRUE)

Left(String, n)
Returns the leftmost n characters of a string.
Parameters String

N
A string.
Number of characters to return.

Return Value String containing the leftmost n characters of the specified string.
See Also Len, Mid operator, Right

LEmphasized(Enable)
Sets the printer’s emphasized print mode.
Parameter Enable TRUE enables emphasized print mode; FALSE disables

emphasized print mode.
Return Value None
Comments Requires the Printer extension.
Example 'Example of LEmphasized(Enable)

LEmphasized(TRUE)

Len(String)
The Len string operator returns the length of a string.
Parameter String A string.
Return Value Size, in characters, of a string.
See Also Left, Mid operator, Right

LFormFeed()
Sends a Form Feed character to the printer.
Parameters None
Return Value None

Satellite Forms 8
Development Guide

398

LIntnlChars

LLineFeed

LLtMargin

LOG

LOG10

Comments Requires the Printer extension.
Example 'Example of LFormFeed()

LFormFeed()

LIntnlChars(Val)
Sets the printer’s international character set.
Parameter Val
Return Value None
Comments Requires the Printer extension.
Example 'Example of LIntnlChars(Val)

LLineFeed(Val)
Moves the print head the specified number of dots.
Parameter Val Number of dots to feed.
Return Value None
Comments Requires the Printer extension.
Example 'Example of LLineFeed(Val)

LLineFeed(15)

LLtMargin(Val)
Sets the left margin to the specified number of characters.
Parameter Val Number of characters to which to set the left margin.
Return Value None
Comments Requires the Printer extension.
Example 'Example of LLtMargin(Val)

LLtMargin(20)

LOG(x)
Calculates the natural logarithm of x.
Parameter x The number for which to calculate the natural logarithm.
Return Value The natural logarithm of x.
Comments Requires the Math extension.
Example 'Example of LOG(x)

Dim z
z = LOG(x)

LOG10(x)
Calculates the base ten logarithm of x.
Parameter x The number for which to calculate the base ten logarithm.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

399

LOG2

Lookup

LPageLength

Return Value The base ten logarithm of x.
Comments Requires the Math extension.
Example 'Example of LOG10(x)

Dim z
z = LOG10(x)

LOG2(x)
Calculates the base two logarithm of x.
Parameter x The number for which to calculate the base two logarithm.
Return Value The base two logarithm of x.
Comments Requires the Math extension.
Example 'Example of LOG2(x)

Dim z
z = LOG2(x)

Tables(TableName).Lookup(KeyColumnName, DisplayColumnName, SearchValue)
Finds an item in a table and returns a value from a different column of that same record.
Parameter TableName Name of the desired table.

KeyColumnName Name of the column to search.
DisplayColumnName Name of the column to return a value from.
SearchValue The value to search for.

Return Value The contents in the Display column of the matching table row if the method finds
SearchValue in the Key column; or a blank string if it does not find SearchValue.

Comments Lookup is a method of the Table object. This function performs a linear search for
the SearchValue in the specified KeyColumn, starting at the first row in the table
and iterating through each row until either a matching value is found or the end or the
table is reached. If a match is found, then the content of the DisplayColumn is
returned. If not match is found, a blank string is returned. Active table filters are
observed, so only visible records are searched. New in Satellite Forms 8.

Example 'Example of Lookup method
'Search table for a specific employee
'and return employee’s age
Dim age
age = Tables("Emps").Lookup("Name", "Age", "John Smith")

See Also Search, BinarySearch

LPageLength(Length)
Set printer's page length to the specified number of lines.
Parameter Length Page length in number of lines.
Return Value None
Comments Requires the Printer extension.
Example 'Example of LPageLength(Length)

LPageLength(50)

Satellite Forms 8
Development Guide

400

LPrint

LPrintCR

LPrintDir

LPrintF

LPrintGraph

LPrint(String)
Prints a string.
Parameter String The string to print.
Return Value None
Comments Requires the Printer extension.
Example 'Example of LPrint(String)

LPrint("Some text")

LPrintCR()
Prints a carriage return. Use LPrintLn to print the characters specified by LSetAutoLF.
Parameters None
Return Value None
Comments Requires the Printer extension.
Example 'Example of LPrintCR()

LPrintCR()

See Also LPrintLN, LSetAutoLF

LPrintDir(Val)
Sets the AutoLF attribute.
Parameter Val
Return Value None
Comments Requires the Printer extension.
Example 'Example of LPrintDir(Val)

LPrintDir(0)

LPrintF(String, W, RJustify)
Prints the specified text in a column of the specified width.
Parameters String The string to print.

W Width of column in characters.
RJustify TRUE to right justify the column; FALSE to left justify the column.

Return Value None
Comments Requires the Printer extension.
Example 'Example of LPrintF(String, W, RJustify)

LPrintF("Some text", 10, FALSE)

LPrintGraph(mode, dat, len)
Prints graphics in single or double density mode.
Parameters mode 1 = single density print mode; 2 = double density print mode.

dat The graphical data to print.
len Number of bytes to print.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

401

LPrintLF

LPrintLN

LRepeatStr

LReset

Return Value None
Comments Requires the Printer extension.
Example 'Example of LPrintGraph(mode, dat, len)

LPrintGraph(2, theGraphic, 2048)

LPrintLF()
Prints a Line Feed character.
Parameters None
Return Value None
Comments Requires the Printer extension.
Example 'Example of LPrintLF()

LPrintLF()

LPrintLN(String)
Prints text followed by a Carriage Return and a Line Feed if AutoLF is set to TRUE.
Parameter String The string to print.
Return Value None
Comments Requires the Printer extension.
Example 'Example of LPrintLN(String)

LPrintLN("Some text")

See Also LSetAutoLF

LRepeatStr(s, n)
Prints the specified string the specified number of times.
Parameters s The string to print.

n The number of times to repeat printing.
Return Value None
Comments Requires the Printer extension.
Example 'Example of LRepeatStr(s,n)

LRepeatStr("Some text", 10)

LReset()
Sends a Reset command to the printer.
Parameters None
Return Value None
Comments Requires the Printer extension.
Example 'Example of LReset()

LReset()

Satellite Forms 8
Development Guide

402

LRtMargin

LSDGraphics

LSelectFont

LSetAutoLF

LSetGraphics

LRtMargin(Val)
Sets the right margin to the specified number of characters.
Parameter Val Number of characters to which to set the right margin.
Return Value None
Comments Requires the Printer extension.
Example 'Example of LRtMargin(Val)

LRtMargin(20)

LSDGraphics(n1, n2)
Sets single density graphics mode for the specified number of following bytes.
Parameters n1

n2 Low-order byte.
Return Value None
Comments Requires the Printer extension.
Example 'Example of LSDGraphics(n1, n2)

LSelectFont(Val)
Sets the font.
Parameter Val
Return Value None
Comments Requires the Printer extension.
Example 'Example of LSelectFont(Val)

LSetAutoLF(Val)
Sets the AutoLF attribute.
Parameter Val TRUE sets AutoLF to Carriage Return + Line Feed; FALSE sets

AutoLF to Line Feed only.
Return Value None
Comments Requires the Printer extension.
Example 'Example of LSetAutoLF(Val)

LSetAutoLF(TRUE)

See Also LPrintLN

LSetGraphics(m, n1, n2)
Sets the printer’s graphics mode and number of bytes. Supports quad density graphics.
Parameters m

n1
n2

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

403

LSetLine

LSubscript

LSuperscript

LTab

LTrim

Return Value None
Comments Requires the Printer extension.
Example 'Example of LSetGraphics(m, n1, n2)

LSetLine(Val)
Sets line height, usually 11 or 15 dots.
Parameter Val Line height in dots, usually 11 or 15.
Return Value None
Comments Requires the Printer extension.
Example 'Example of LSetLine(Val)

LSetLine(15)

LSubscript(Val)
Sets the printer’s subscript mode to the specified number of dots.
Parameter Val Number of dots to lower subscripts.
Return Value None
Comments Requires the Printer extension.
Example 'Example of LSubscript(Val)

LSubscript(4)

LSuperscript(Val)
Sets the printer’s superscript mode to the specified number of dots.
Parameter Val Number of dots to raise superscripts.
Return Value None
Comments Requires the Printer extension.
Example 'Example of LSuperscript(Val)

LSuperscript(4)

LTab()
Sends a Tab character to the printer.
Parameters None
Return Value None
Comments Requires the Printer extension.
Example 'Example of LTab()

LTab()

LTrim(string)
Trims leading spaces from input string.
Parameters String The string to trim leading spaces from.

Satellite Forms 8
Development Guide

404

Max

MemoryAbout

MemoryAllocate

MemoryCompare

Return Value The input string trimmed of leading spaces.
Comments Requires the Strings extension.
See Also RTrim, Trim
Example 'Example of LTrim

Dim strTest
strTest = LTrim(“ ABCD”)
'Result: strTest contains “ABCD”

See Also RTrim

Tables(TableName).Max(ColumnName)
Returns the maximum value in a specified column in all records in a table.
Parameters TableName

ColumnName
Name of a table.
Name of a column.

Return Value Maximum value in the specified column in all records in the table.
Comments Max is a method of the Table object.
Example 'Example of Max method

'Output A is an edit control.
OutputA = Tables("Emps").Max("Salary")

See Also Sum, Min

MemoryAbout()
Displays information about the Memory extension in a dialog box.
Parameters None
Return Value None
Comments Requires the Memory extension.
Example 'Example of MemoryAbout()

MemoryAboutAbout()

MemoryAllocate(Size)
Allocates dynamic memory.
Parameter size The number bytes to allocate.
Return Value
Comments Requires the Memory extension.
Example 'Example of MemoryAllocate(Size)

Memory = MemoryAllocate(128)

MemoryCompare(Memory1, Memory2, Count)
Compares two blocks of memory.
Parameters Memory1

Memory2
Count

Return Value

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

405

MemoryCopy

MemoryFree

MemoryGetByte

MemoryGetString

Comments Requires the Memory extension.
Example

MemoryCopy(Memory1, Memory2, Count)
Copies one block of dynamic memory to another.
Parameters Memory1

Memory2
Count

Return Value
Comments Requires the Memory extension.
Example

MemoryFree(Memory)
Frees memory allocated using MemoryAllocate.
Parameter Memory The number bytes to allocate.
Return Value 0 if the memory is successfully freed; non-zero if the function fails.
Comments Requires the Memory extension.
Example 'Example of MemoryFree(Memory)

Dim bMemFreeSuccess
bMemFreeSuccess = MemoryFree(Memory1)

MemoryGetByte(Memory, Offset)
Returns the value of the specified byte in memory.
Parameters Memory The block of dynamic memory from which to retrieve the

specified byte.
Offset The offset within the block of dynamic memory from which to

retrieve the specified byte.
Return Value The specified byte of memory.
Comments Requires the Memory extension.
Example ‘Example of MemoryGetByte(Memory, Offset)

Byte = MemoryGetByte(Memory1, 15)

MemoryGetString(Memory, Offset, Count)
Returns the value of the specified string in memory.
Parameters Memory The block of dynamic memory from which to retrieve the

specified string.
Offset The offset within the block of dynamic memory from which to

retrieve the specified string.
Count The number of characters to return.

Return Value The specified string from memory.

Satellite Forms 8
Development Guide

406

MemoryReallocate

MemoryReverse

MemorySearch

MemorySet

Comments Requires the Memory extension.
Example ‘Example of MemoryGetString(Memory, Offset, Count)

Byte = MemoryGetString(Memory1, 15, 10)

MemoryReallocate(Memory, Size)
Resizes a block of dynamic memory.
Parameters Memory The block of dynamic memory to reallocate.

Size The new size for specified block of dynamic memory.
Return Value The reallocated block of memory.
Comments Requires the Memory extension.
Example ‘Example of MemoryReallocate(Memory, Size)

Memory1Resized = MemoryReallocate(Memory1, 25)

MemoryReverse(Memory, Size)
Reverses a block of dynamic memory.
Parameters Memory The block of dynamic memory to Reverse.

Size The size for specified block of dynamic memory.
Return Value The reversed block of memory.
Comments Requires the Memory extension.
Example ‘Example of MemoryReverse(Memory, Size)

Memory1Reversed = MemorySearch(Memory1, 25)

MemorySearch(Memory1, Size1, Memory2, Size2)
Searches for a block of memory in another block of memory.
Parameters Memory1 The block of dynamic memory in which to search.

Size1
Memory2 The block of dynamic memory to search for.
Size2

Return Value The offset of Memory2 in Memory1 if found; -1 if not found.
Comments Requires the Memory extension.
Example ‘Example of MemorySearch(Memory1, Size1, Memory2, Size2)

Offset = MemorySearch(Memory1, 15, Memory2, 10)

MemorySet(Memory, Byte, Count)
Sets a range of memory to the specified value.
Parameters Memory The block of dynamic memory to set.

Byte The value to which to set the specified range of memory.
Count The number of bytes to set to the specified value.

Return Value
Comments Requires the Memory extension.
Example ‘Example of MemorySet(Memory, Byte, Count)

Byte = MemorySet(Memory1, 0, 10)

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

407

MemorySetByte

MemorySetString

Mid operator

Mid statement

MemorySetByte(Memory, Offset, Byte)
Sets the value of the specified byte in memory.
Parameters Memory The block of dynamic memory to set.

Offset The offset within the block of dynamic memory to which to set
the specified byte value.

Byte The new byte value.
Return Value
Comments Requires the Memory extension.
Example ‘Example of MemorySetByte(Memory, Offset, Byte)

Byte = MemorySetByte(Memory1, 10, newByte)

MemorySetString(Memory, Offset, String)
Sets the value of the specified string in memory.
Parameters Memory The block of dynamic memory to set.

Offset The offset within the block of dynamic memory to which to set
the specified string value.

String The new string value.
Return Value
Comments Requires the Memory extension.
Example ‘Example of MemorySetString(Memory, Byte, String)

Byte = MemorySetString(Memory1, 15, "A new String")

Mid(String, n, m)
Returns m characters of a string beginning at character n.
Parameters String

N
m

A string.
The index of the first character to return.
The number of characters to return.

Return Value String containing m characters of the specified string, beginning at character n.
Comments The first character in the string has an index of zero. The parameter m is

optional. If it is omitted, the remainder of the string is returned.
See Also Left, Len, Mid statement, Right

Mid(String1, n, m) = String2
Replaces m characters of String1 beginning at character n with the entirety of String2.
Parameters String1

N
m

The string to be modified.
The index of the first character to be replaced.
The number of characters to replace with String2.

Return Value None
Comments The first character in the string has an index of zero. The parameter m is

optional. If it is omitted, the entire remainder of the string is replaced with
String2.

See Also Left, Len, Mid operator, Right

Satellite Forms 8
Development Guide

408

Min

Mod

MODFRAC

MODFINT

Tables(TableName).Min(ColumnName)
Returns the minimum value in a specified column in all records in a table.
Parameters TableName

ColumnName
Name of a table.
Name of a column.

Return Value Minimum value in the specified column in all records in the table
Comments Min is a method of the S object.
See Also Max, Sum

Operand1 Mod Operand2
Divides one value or variable by another using integer division and returns the remainder.
Parameters Operand1

Operand2
Value or variable to be divided by Operand2.
Value or variable by which Operand1 is divided.

Return Value The remainder of the integer division of Operand1 by Operand2.
Comments Both operands are treated as integers if they are not integers already. Decimal

places are truncated. The result is an integer.
Example 'Example of Mod

'InputA, InputB, and OutputA are edit controls.
OutputA = InputA Mod InputB

See Also]+ [add], / [divide, float], \ [divide, integer], * [multiply], - [subtract]

MODFRAC(x)
Breaks a floating-point number into integer and fractional parts, returning the fractional part.
Parameter x The number to break into integer and fractional parts.
Return Value The fractional part of x.
Comments Requires the Math extension.
Example 'Example of MODFRAC(x)

Dim z
Dim x
x = 23.45634
z = MODFRAC(x)

MODFINT(x)
Breaks a floating-point number into integer and fractional parts, returning the integer part.
Parameter x The number to break into integer and fractional parts.
Return Value The integer part of x.
Comments Requires the Math extension.
Example 'Example of MODFINT(x)

Dim z
Dim x
x = 23.45634
z = MODFINT(x)

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

409

MoveCurrent

MoveFirst

Tables(TableName).MoveCurrent
Makes the record in a form’s linked table match the record being displayed by the form.
Parameter TableName Name of a table.
Return Value None
Comments MoveCurrent is a method of the Table object. Use MoveFirst,

MoveLast, MoveNext, and MovePrevious to iterate through the records
in a table to access or update data. These methods do not change the data
displayed in the form. When you have completed iterating through all the
records, use MoveCurrent to return the table to the record displayed on the
form.
If you are updating data in the current record (the record displayed in the form)
by directly updating the table, you should also update the controls on the form
with the new data values. If you fail to do this, Satellite Forms saves the
displayed values to the table when you leave the current record.
Note that Move* methods are affected by all active filters.

Example See the example for the following method, MoveFirst.
See Also MoveFirst, MoveLast, MoveNext, MovePrevious, RecordValid

Object.MoveFirst
Moves to the first record of an object.
Parameter Object Name of an object.
Return Value None
Comments MoveFirst is a method of the Table object and the Form object and

behaves differently depending on the object against which it is called.
When used with a Form object, MoveFirst, MoveLast, MoveNext, and
MovePrevious change both the record displayed in the form and the record
in the form’s underlying table. This behavior is equivalent to the actions Goto
First Record, Goto Last Record, Goto Next Record, and Goto Prev. Record.
When used with a Table object, MoveFirst, MoveLast, MoveNext, and
MovePrevious change the table, but do not affect the form. Use these
methods to iterate through the records in a table to access or update data.
When you have completed iterating through all the records, use
MoveCurrent to return the table to the record displayed on the form.
If you are updating data in the current record (the record displayed on the
form) by directly updating the table, you should also update the controls on the
form with the new data values. If you fail to do this, Satellite Forms saves the
displayed values to the table when you leave the current record.
Note that Move* methods are affected by all active filters.

Satellite Forms 8
Development Guide

410

MoveLast

Example 'Example of MoveFirst and MoveNext.
'Emps is a table.
'Give all employees a 10% raise.
Dim Pay
Dim NewPay
'Go to the first record.
Tables("Emps").MoveFirst
'Loop through all records.
While Tables("Emps").RecordValid = TRUE

Pay = Tables("Emps").Fields("Salary")
NewPay = Pay * 1.1

Tables("Emps").Fields("Salary") = NewPay
'Go to the next record.
Tables("Emps").MoveNext

Wend
'Update the form with the new value of the current record.
Tables("Emps").MoveCurrent Controls("Salary") = _

Tables().Fields("Salary")

See Also MoveCurrent, MoveLast, MoveNext, MovePrevious, RecordValid

Object.MoveLast
Moves to the last record of an object.
Parameter Object Name of an object.
Return Value None
Comments MoveLast is a method of the Table object and the Form object and

behaves differently depending on the object.
When used with a Form object, MoveFirst, MoveLast, MoveNext, and
MovePrevious change both the record displayed in the form and the record
in the form’s underlying table. This behavior is equivalent to the actions Goto
First Record, Goto Last Record, Goto Next Record, and Goto Prev. Record.
When used with a Table object, MoveFirst, MoveLast, MoveNext, and
MovePrevious change the table, but do not affect the form. Use these
methods to iterate through the records in a table to access or update data.
When you have completed iterating through all the records, use
MoveCurrent to return the table to the record displayed on the form.
If you are updating data in the current record (the record displayed on the
form) by directly updating the table, you should also update the controls on the
form with the new data values. If you fail to do this, Satellite Forms saves the
displayed values to the table when you leave the current record.
Note that Move* methods are affected by all active filters.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

411

MoveNext

MoveNextPage

Example 'Example of MoveLast and MovePrevious
'Emps is a table.
'Salary is a column in the Emps table and an
'edit control.
'Give all employees a 10% raise.
Dim Pay
Dim NewPay
'Go to the last record.
Tables("Emps").MoveLast
'Loop for all records.
While Tables("Emps").RecordValid = TRUE

Pay = Tables("Emps").Fields("Salary")
NewPay = Pay * 1.1

Tables("Emps").Fields("Salary") = NewPay
'Go to the previous record.

Tables("Emps").MovePrevious
Wend
'Update the form with the new value of the current record.
Tables("Emps").MoveCurrent
Controls("Salary") = Tables().Fields("Salary")

See Also MoveCurrent, MoveFirst, MoveNext, MovePrevious, RecordValid

Tables(TableName).MoveNext
Moves to the next record of an object.
Parameter TableName Name of a table.
Return Value None
Comments MoveNext is a method of the Table object and the Form object and behaves

differently depending on the object.
When used with a Form object, MoveFirst, MoveLast, MoveNext, and
MovePrevious change both the record displayed in the form and the record
in the form’s underlying table. This behavior is equivalent to the actions Goto
First Record, Goto Last Record, Goto Next Record, and Goto Prev. Record.
When used with a Table object, MoveFirst, MoveLast, MoveNext, and
MovePrevious change the table, but do not affect the form. Use these
methods to iterate through the records in a table to access or update data.
When you have completed iterating through all the records, use
MoveCurrent to return the table to the record displayed on the form.
If you are updating data in the current record (the record displayed on the form)
by directly updating the table, you should also update the controls on the form
with the new data values. If you fail to do this, Satellite Forms saves the
displayed values to the table when you leave the current record.
Note that Move* methods are affected by all active filters.

Example See the example of MoveFirst and MoveNext on page 410.
See Also MoveCurrent, MoveFirst, MoveLast, MovePrevious, RecordValid

Forms(FormName).MoveNextPage
Moves to the next page of a multi-page form.
Parameter FormName Name of a form.
Return Value None

Satellite Forms 8
Development Guide

412

MovePrevious

MovePreviousPage

Comments MoveNextPage is a method of the Form object. If the current page is the last
page of the form, MoveNextPage moves to the next record on the first page
of the form. Page numbers are zero-based.

Example 'Example of MoveNextPage
'Emps is a form with two pages.
If Forms("Emps").CurrentPage = 0 Then

Forms("Emps").MoveNextPage
ElseIf Forms("Emps").CurrentPage = 1 Then

Forms("Emps").MovePreviousPage
EndIf

See Also CurrentPage, MovePreviousPage

Tables(TableName).MovePrevious
Moves to the previous record of an object.
Parameter TableName Name of a table.
Return Value None
Comments MovePrevious is a method of the Table object and the Form object and

behaves differently depending on the object.
When used with a Form object, MoveFirst, MoveLast, MoveNext, and
MovePrevious change both the record displayed in the form and the record
in the form’s underlying table. This behavior is equivalent to the actions Goto
First Record, Goto Last Record, Goto Next Record, and Goto Prev. Record.
When used with a Table object, MoveFirst, MoveLast, MoveNext, and
MovePrevious change the table, but do not affect the form. Use these
methods to iterate through the records in a table to access or update data.
When you have completed iterating through all the records, use
MoveCurrent to return the table to the record displayed on the form.
If you are updating data in the current record (the record displayed on the
form) by directly updating the table, you should also update the controls on the
form with the new data values. If you fail to do this, Satellite Forms saves the
displayed values to the table when you leave the current record.
Note that Move* methods are affected by all active filters.

Example See the Example of MoveLast and MovePrevious on page 411.
See Also MoveCurrent, MoveFirst, MoveLast, MoveNext, RecordValid

Forms(FormName).MovePreviousPage
Moves to the previous page of a multi-page form.
Parameter FormName Name of a form.
Return Value None
Comments MovePreviousPage is a method of the Form object. If the current page is

the first page of the form, MovePreviousPage moves to the last page of the
form and displays the previous record. Page numbers are zero-based.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

413

MoveRecord

MsgBox

Not [bitwise]

Not [logical]

Example 'Example of MovePreviousPage
'Emps is a form with two pages.
If Forms("Emps").CurrentPage = 0 Then

Forms("Emps").MoveNextPage
ElseIf Forms("Emps").CurrentPage = 1 Then

Forms("Emps").MovePreviousPage
EndIf

See Also CurrentPage, MoveNextPage

Tables(TableName).MoveRecord(ToRec, FromRec)
Removes a record at FromRec and reinserts it before ToRec.
Parameters TableName

ToRec
FromRec

Name of a table
Index of the record before which FromRec is to be placed.
Index of the record to move.

Return Value None
Comments MoveRecord is a method of the Table object. The indexes for FromRec and

ToRec are both zero-based.

MsgBox(MessageText)
Displays a dialog box with the specified message and an OK button.
Parameter MessageText Text of message to be displayed in dialog box.
Return Value None
Comments MsgBox is a method of the App object.
Example 'Example of the MsgBox method

'InputA is an edit control.
MsgBox("The answer is " & InputA)

See Also Prompt,

Not numerical expression
This operator, when used with a numerical expression, performs a bitwise Not operation on its
argument.
Parameter Numerical expression Numerical value or expression to which the Not

operation ise applied.
Return Value The bitwise Not of the specified number.
Example 'Example of Not

'InputA and OutputA are edit controls.
OutputA = Not Int(InputA)

See Also And [bitwise]And [logical], Or [bitwise], Xor [bitwise]

Not logical expression
Negates a logical value or variable.
Parameter Expression Logical value or variable to be negated.

Satellite Forms 8
Development Guide

414

OnClick

OnKey

OnPenDown

Return Value TRUE if expression evaluates to FALSE; FALSE if expression evaluates to
TRUE.

Comments Note that Xor, And, Or, and Not only perform Boolean operations if both
conditions are Boolean. Otherwise, they perform bitwise operations on their
operands.

Example 'Example of Not
'InputA, InputB, and OutputA are edit controls.
If InputA = InputB Then

OutputA = "A=B"
ElseIf Not (InputA = InputB) Then

OutputA = "A<>B"
EndIf

See Also And [bitwise]And [logical], Or [logical], Xor [logical]

Occurs for a control when the user taps the control.
Comments OnClick is an event of the Control and Extension objects.

Use OnClick to perform logic that executes whenever the user taps a control.
Controls that support the OnClick event include buttons, check boxes, drop
lists, list boxes, radio buttons, and SFX Custom controls (if supported by the
control).
OnClick fires after the control executes its intrinsic action – check boxes
check/uncheck themselves before firing an OnClick event.
OnClick is useful for many functions. For example, you can place a calculate
button on an order form that runs a script that sums the order based on the
customer’s discount schedule and then adds applicable taxes.

Occurs when the user presses one of the plastic keys or silk-screened buttons, or enters a
Graffiti stroke on a handheld device.
Comments Use this event to perform special actions when the user presses a particular

key or enters a particular stroke in the Graffiti area. Call GetLastKey inside
your OnKey event handler to determine which key the user pressed.
If you exit the handler with the Exit keyword, the key is passed on to the
operating system as if you did not have an OnKey event handler. If, however,
you exit the handler with the Fail keyword, the key is discarded as if it were
never entered.

See Also GetLastKey

Occurs when the stylus touches the screen.
Comments Typically, code that tracks the pen is placed in this handler. Call

GetPenStatus in a loop and perform your processing. When
GetPenStatus returns FALSE, exit the loop and the event handler.

See Also GetPenStatus, OnPenUp

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

415

OnPenUp

OnTimer

OnValidate

OpenPort

Occurs when the user lifts the stylus from the screen.
Comments This event is not usually used. Applications that track the stylus usually do so

with the OnPenDown event described above.
See Also GetPenStatus, OnPenDown

When the timer is on, an OnTimer event occurs every period of the timer.
Comments The timer event is usually used for performing repetitive tasks without tying up

the CPU. If use a loop to perform a repetitive task, call Delay, and then loop
again, the CPU is tied up for the duration of the loop and the handheld cannot
respond to any user interaction.
If instead, you call SetTimer to turn on the timer with the desired frequency
and then perform one iteration of the repetitive task in the OnTimer event
handler each time it is called, the CPU is free to interact with the user while the
handler is not running. When done with the timer, call KillTimer to turn it
off.

See Also KillTimer, SetTimer

Occurs when a form’s data is validated.
Comments Use OnValidate to perform logic that should be executed when a form’s

data is validated.
OnValidate fires when a user navigates to another record or page in the
current form, jumps to another form, applies a filter to the form’s linked table, or
exits the current application.
When a form closes, first OnValidate fires and then BeforeClose fires. If
the script associated with OnValidate fails, BeforeClose never fires and
the form is not exited.
OnValidate is useful for performing complex data validation. For example,
you might total a customer’s order and ensure that the total is within the
customer’s credit limit. If the order total exceeds the credit limit, you can fail the
OnValidate event and prompt the user to adjust the order information.
You can prevent the user from exiting an application with incomplete data by
checking the data in the OnValidate handler and using the Fail keyword if
you want to prevent the application from exiting.

See Also BeforeClose

OpenPort()
Opens the serial port using the settings specified with SetPort. Opening the serial port uses
more battery power.
Parameters None
Return Value None
Comments Requires the Printer extension.
Example 'Example of OpenPort()

OpenPort()

See Also ClosePort

Satellite Forms 8
Development Guide

416

Or [bitwise]

Or [logical]

Pad

Number1 Or Number2
Performs a bitwise Or operation between the operands.
Parameters Number1

Number2
First operand.
Second operand.

Return Value The result of a bitwise Or of the two operands.
Example 'Example of bitwise Or

'InputA is an edit control.
'Set bit 4 (mask = 10 hex) in number.
OutputA = InputA Or &H10

See Also And [bitwise]And [logical], Not [bitwise], Xor [bitwise]

Condition1 Or Condition2
Joins two conditions where either condition must evaluate to TRUE for the statement to
evaluate to TRUE.
Parameters Condition1

Condition2
First condition to be evaluated.
Second condition to be evaluated.

Return Value TRUE if Condition1 evaluates to TRUE or Condition2 evaluates to TRUE;
FALSE if both Condition1 and Condition2 evaluate to FALSE.

Comments If both Condition1 and Condition2 evaluate to TRUE, the statement evaluates
to TRUE. Each condition is evaluated individually, then the Or statement is
performed. Note that Xor, And, Or, and Not only perform Boolean operations
if both conditions are Boolean. Otherwise, they perform bitwise operations on
their operands.

Example 'Example of Or
'InputA, InputB, and OutputA are edit controls.
If InputA > 10 Or InputB > 10 Then

OutputA = "TRUE"
Else

OutputA = "FALSE"
EndIf

See Also And [bitwise]And [logical], Not [logical], Xor [logical]

Pad(length, string, padchar)
Pads a string with defined character to defined length. The pad character is added to the
beginning of the string to make a final string of the defined length.
Parameters Length Desired length to pad string out to.

String Source string to be padded
PadChar Character to left pad the string with.

Return Value String padded with padchar out to specified length.
Comments Requires the Strings extension.
Example 'Example of Pad

Dim strTest
strTest = Pad(8, “12345”, “0”)
'Result: strTest contains “00012345”

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

417

PBD_About

PBD_BeamDb

PBD_SendDbByName

PBD_Version

PDM_About

PBD_About()
Displays information about the extension in a dialog box.
Parameters None
Return Value None
Comments Requires the Puma Beam DB extension.
Example 'Example of PBD_About()

PBD_About()

PBD_BeamDb(Local_ID, Card_No, File_Name, Desc_Name)
Sends a Palm database file to another device using the IR port.
Parameters Local_ID

Card_No
File_Name The name of the database file to be transferred.
Desc_Name Descriptive name for the user.

Return Value None
Comments Requires the Puma Beam DB extension.
See Also PBD_SendDbByName

PBD_SendDbByName(File_Name, Desc_Name)
Sends Palm Db specified by name, giving user option to select transport method (Beam,
Bluetooth, SMS, VersaMail, etc.).
Parameters File_Name The name of the database file to be transferred.

Desc_Name Descriptive name for the user.
Return Value None
Comments Requires the Puma Beam DB extension.
See Also PBD_BeamDb

PBD_Version()
Returns the version number of this extension.
Parameters None
Return Value The version number of this extension.
Comments Requires the Puma Beam DB extension.

PDM_About()
Displays information about the extension in a dialog box.
Parameters None
Return Value None
Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_About()

PDM_About()

Satellite Forms 8
Development Guide

418

PDM_DeleteDb

PDM_GetDbAppInfoID

PDM_GetDbAttributes

PDM_GetDbBckUpDate

PDM_GetDbBckUpDateStr

PDM_DeleteDb(Local_ID, Card_No)
Deletes the specified database.
Parameters Local_ID

Card_No
Return Value None
Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_DeleteDb(Local_ID, Card_No)

PDM_GetDbAppInfoID(Local_ID)
Returns the app info ID of the LastDb cache (Local ID).
Parameter Local_ID
Return Value The app info ID of the LastDb cache (Local ID).
Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_GetDbAppInfoID(Local_ID)

PDM_GetDbAttributes()
Returns attributes of the LastDb cache.
Parameters None
Return Value The attributes of the LastDb cache.
Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_GetDbAttributes()

PDM_GetDbBckUpDate()
Returns the last back up date of the LastDb cache.
Parameters None
Return Value The last back up date of the LastDb cache.
Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_GetDbBckUpDate()

PDM_GetDbBckUpDateStr()
Returns the last back up date of the LastDb cache as a string.
Parameters None
Return Value The last back up date of the LastDb cache as a string.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

419

PDM_GetDbCardNo

PDM_GetDbCrDate

PDM_GetDbCrDateStr

PDM_GetDbCreatorID

Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_GetDbBckUpDateStr()

Dim BackupDateStr
BackupDateStr = PDM_GetDbBckUpDateStr()

PDM_GetDbCardNo()
Returns the card number of the LastDb cache.
Parameters None
Return Value The card number of the LastDb cache.
Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_GetDbCardNo()

Dim DbCardNo
DbCardNo = PDM_GetDbBckUpDateStr()

PDM_GetDbCrDate()
Returns the creation date of the LastDb cache.
Parameters None
Return Value The creation date of the LastDb cache.
Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_GetDbCrDate()

PDM_GetDbCrDate()
Returns the creation date of the LastDb cache as a string.
Parameters None
Return Value The creation date of the LastDb cache as a string.
Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_GetDbCrDateStr()

Dim DbCreateDateStr
DbCreateDateStr = PDM_GetDbCrDateStr()

PDM_GetDbCreatorID()
Returns the creator ID of the LastDb cache.
Parameters None
Return Value The creator ID of the LastDb cache as a string.
Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_GetDbCreatorID()

Dim DbCreatorID
DbCreatorID = PDM_GetDbCreatorID()

Satellite Forms 8
Development Guide

420

PDM_GetDbDataBytes

PDM_GetDbModDate

PDM_GetDbModDateStr

PDM_GetDbModNum

PDM_GetDbName

PDM_GetDbDataBytes()
Returns the number of bytes in the data portion of the LastDb cache.
Parameters None
Return Value The number of bytes in the data portion of the LastDb cache.
Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_GetDbDataBytes()

Dim DbDataBytes
DbDataBytes = PDM_GetDbDataBytes()

PDM_GetDbModDate()
Returns the modification date of the LastDb cache.
Parameters None
Return Value The modification date of the LastDb cache.
Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_GetDbModDate()

PDM_GetDbModDateStr()
Returns the modification date of the LastDb cache as a string.
Parameters None
Return Value The modification date of the LastDb cache as a string.
Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_GetDbModDateStr()

Dim DbModDateStr
DbModDateStr = PDM_GetDbModDateStr()

PDM_GetDbModNum()
Returns the number of modifications to the LastDb cache.
Parameters None
Return Value The number of modifications to the LastDb cache.
Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_GetDbModNum()

Dim DbModNum
DbModNum = PDM_GetDbModNum()

PDM_GetDbName()
Returns the name of the last database loaded.
Parameters None
Return Value The name of the last database loaded.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

421

PDM_GetDbNumRecords

PDM_GetDbSortInfoID

PDM_GetDbTotalBytes

PDM_GetDbType

Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_GetDbName()

Dim DbName
DbName = PDM_GetDbName()

PDM_GetDbNumRecords()
Returns the number of records contained in the LastDb cache.
Parameters None
Return Value The number of records contained in the LastDb cache.
Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_GetDbNumRecords()

Dim DbNumRecs
DbNumRecs = PDM_GetDbNumRecords()

PDM_GetDbSortInfoID()
Returns the sort info ID of the LastDb cache.
Parameters None
Return Value The sort info ID of the LastDb cache.
Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_GetDbSortInfoID()

Dim DbSortInfoID
DbSortInfoID = PDM_GetDbSortInfoID()

PDM_GetDbTotalBytes()
Returns the number of bytes in the LastDb cache.
Parameters None
Return Value The number of bytes in the LastDb cache.
Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_GetDbTotalBytes()

Dim DbTotalBytes
DbTotalBytes = PDM_GetDbTotalBytes()

PDM_GetDbType()
Returns the type of the LastDb cache.
Parameters None
Return Value The type of the LastDb cache.
Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_GetDbType()

Dim DbType
DbType = PDM_GetDbType()

Satellite Forms 8
Development Guide

422

PDM_GetDbVersion

PDM_GetLastError

PDM_GetNextDb

PDM_GetNumberOfMatchingDb

PDM_GetDbVersion()
Returns the version number of the LastDb cache.
Parameters None
Return Value The version number of the LastDb cache.
Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_GetDbVersion()

Dim DbVersion
DbVersion = PDM_GetDbVersion()

PDM_GetLastError()
Returns the last error code.
Parameters None
Return Value The last error code.
Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_GetLastError()

Dim LastError
LastError = PDM_GetLastError()

PDM_GetNextDb()
Returns the local ID of the next database that matches the search criteria. Consecutive calls to
this method traverses all databases matching the search criteria.
Parameters None
Return Value The local ID of the next database that matches the search criteria.
Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_GetNextDb()

Dim NextDbID
NextDbID = PDM_GetNextDb()

PDM_GetNumberOfMatchingDb(CreatorID, TypeID, Version)
Returns the number of databases that match the search criteria.
Parameters CreatorID

TypeID
Version

Return Value The number of databases that match the search criteria.
Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_GetNumberOfMatchingDb(CreatorID, TypeID, Version)

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

423

PDM_LoadDb

PDM_NewDbIterator

PDM_SetDbAttributes

PDM_Version

PDM_LoadDb(Local_ID, Card_No)
Loads the specified database into the LastDb cache.
Parameters Local_ID

Card_No
Return Value None
Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_LoadDb(Local_ID, Card_No)

PDM_NewDbIterator(CreatorID, TypeID, Version)
Starts a new search.
Parameters CreatorID

TypeID
Version

Return Value None
Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_NewDbIterator(CreatorID, TypeID, Version)

PDM_SetDbAttributes(LocalID, Card_No, New_Attributes)
Sets the attributes of the specified database.
Parameters LocalID

Card_No
New_Attributes

Return Value None
Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_SetDbAttributes(LocalID, Card_No, New_Attributes)

PDM_Version()
Returns the version number of this extension.
Parameters None
Return Value The version number of this extension.
Comments Requires the Puma Data Manager extension.
Example 'Example of PDM_Version()

Dim DbVersion
DbVersion = PDM_Version()

Satellite Forms 8
Development Guide

424

PEM_About

PEM_GetErrorString

PEM_Version

Popup

Position

PEM_About()
Displays information about the extension in a dialog box.
Parameters None
Return Value None
Comments Requires the Puma Error Manager extension.
Example 'Example of PEM_About()

PEM_About()

PEM_GetErrorString(Error_Number)
Converts an error code to a string.
Parameter Error_Number The error code for which to retrieve a descriptive string.
Return Value The string description for the specified error code..
Comments Requires the Puma Error Manager extension.
Example 'Example of PEM_GetErrorString(Error_Number)

Dim x
x = PEM_GetErrorString(134)

PEM_Version()
Returns the version number of this extension.
Parameters None
Return Value The version number of this extension.
Comments Requires the Puma Error Manager extension.
Example 'Example of PEM_Version()

Dim x
x = PEM_Version()

ControlName.Popup
For droplist controls, this method pops up the selection list as if the user had tapped on the
droplist control. For edit and paragraph controls that have the AutoKeyboard setting enabled,
this method pops up the defined automatica keyboard for that control.
Parameter ControlName Name of a control.
Return Value None
Comments Popup is a method of the Control object. It enables you to pop up a droplist

selection list or an edit/paragraph control automatica keyboard under script
control.

Tables(TableName).Position
Returns the row number of the current row in the table or can be assigned to set the table to a
specific row.
Parameter TableName Name of a table.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

425

POW

PreviousForm

Process

Prompt

Return Value Zero-based number of the current row in the table if used to access the
position, or none if used to set the position.

Comments Position is a property of the Table object. This property is not normally
used. Navigation through records of a table should use the Move* table
methods whenever possible.
Note: The Position property does not take into account any active filters.
By successively incrementing a value starting at zero and using it to set the
Position property of a table, you always visit all records of the table.

POW(x, y)
Calculates exponential x to the y.
Parameters x The number to raise to the power y.

y The exponential value.
Return Value The result of xy.
Comments Requires the Math extension.
Example 'Example of POW(x, y)

Dim z
z = POW(x, y)

Forms().PreviousForm
Returns to the previous form.
Parameter FormName Name of the current form (optional, not needed).
Return Value None
Comments PreviousForm is a method of the Form object.

PreviousForm returns to the previous form, just like using a control with the
ReturnToPreviousForm action.

See Also Show

Extension.Process()
Call from a Timer event to process automatic events.
Parameters None
Return Value TRUE if a scan was processed for Symbol Integrated Scanner.
Comments Applies only to the Bar Code Reader and Symbol Integrated Scanner

extensions.
Example 'Example of Process()

BarCode1.Process()

Prompt(MessageText)
Displays the specified message in a dialog box with OK and CANCEL buttons.
Parameter MessageText Text of message to be displayed in dialog box.
Return Value 1 if the user taps the OK button;

0 if the user taps the CANCEL button
Comments Prompt is a method of the App object.

Satellite Forms 8
Development Guide

426

PromptCustom

QuickSort

Example 'Example of the Prompt method
Dim x
x = Prompt("Do you want to continue?")
If x = 1 Then

MsgBox("OK, we will continue.")
Else

MsgBox("I’m sorry you want to quit.")
EndIf

See Also MsgBox, PromptCustom

PromptCustom(strTitle, strMessage, strButton1, strButton2, strButton3))
Displays a prompt dialog containing custom buttons and a custom message. This prompt
dialog is dismissed when any of the buttons are clicked.
Parameters strTitle Title of the prompt dialog

strMessage Text of message to be displayed in dialog box.
strButton1 Text of button no 1 (if no text is specified, button 1 will be

invisible)
strButton2 Text of button no 2 (if no text is specified, button 2 will be

invisible)
strButton3 Text of button no 3 (if no text is specified, button 3 will be

invisible)
Return Value 0 if the user taps button1;

1 if the user taps button2;
2 if the user taps button3

Comments PromptCustom is a method of the App object.
Example 'Example of the PromptCustom method

Dim x
x = PromptCustom(“Select Option”,"Choose the desired option?",
“Opt 1”, “Opt 2”, “Opt 3”)
If x = 0 Then

MsgBox("Option 1 selected")
ElseIf x = 1 Then

MsgBox("Option 2 selected")
Else

MsgBox("You selected Option 3")
EndIf

See Also Prompt, MsgBox

Tables(TableName).QuickSort(ColumnName, Direction)
Sorts the records in the specified table using the specified column as the key in ascending or
descending order.
Parameters TableName

ColumnName
Direction

Name of a table.
Name of a column.
Sort order. Use TRUE for ascending and FALSE for
descending.

Return Value None

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

427

Quit

ReadOnly

RecordAdv

Comments QuickSort is a method of the Table object. This method is faster than
InsertionSort, but it does not preserve the relative order of the previous
sort (presumably sorted on a different key). For example, if you sorted on
NAME and then sorted by AGE, the table would be sorted by AGE and the
previous sort on NAME would not be preserved, that is, records within the
same age would not be sorted by NAME.

Example 'Example of QuickSort method
'Sort table by employee name.
Tables("Emps").QuickSort("Name", TRUE)

See Also InsertionSort

Quit
Exits from the application and returns to the app launcher.
Parameters None
Return Value None
Comments Use Quit to close your application and return to the app launcher. Form

validation events and the BeforeAppEnd event wil be called just as with a user-
initiated exit.

Example 'Close the application now
Quit

ControlName.ReadOnly
Returns or sets the value of a control’s read-only attribute.
Parameter ControlName Name of a control.
Return Value TRUE if data in the object is read-only; FALSE if data in the object can be

edited.
Comments ReadOnly is a property of the Control object. You can also change a

control’s read-only property by setting this property. In that case, the function
does not return a value.

Example 'Example of ReadOnly property
'InputA is an edit control.
'Make data in InputA non-editable.
If InputA.ReadOnly = FALSE Then

InputA.ReadOnly = TRUE
EndIf

Extension.RecordAdv(str)
Sets the Record Advance mode.
Parameter str "Off" Never changes the record. You must do so manually using

the AFTERSCAN property.
"On" Advances to last record and stops.
"AlwaysCrt" Creates a new record after last Edit control.
"CrtAtEnd" Advance through the records, create new after last
record.

Return Value None

Satellite Forms 8
Development Guide

428

RecordValid

Refresh

Comments Applies only to the Bar Code Reader and Symbol Integrated Scanner
extensions.

Example 'Example of RecordAdv(str)
BarCode1.RecordAdv("On")

Tables(TableName).RecordValid
Indicates whether any of the Move* methods have moved to a valid record in the table.
Parameters TableName Name of a table.
Return Value TRUE if the current record is valid; FALSE if it is not.
Comments RecordValid is a read-only property of the Table object. Use

MoveFirst, MoveLast, MoveNext, and MovePrevious to iterate
through the records in a table to access or update data. These methods do
not change the data displayed on the form. When are finished iterating
through the records, use MoveCurrent to return the table to the record
displayed on the form.
Note that Move* methods are affected by all active filters.
This property is FALSE if there are no records in the table or there are no
more records that satisfy all active filters.

Example 'Example of RecordValid
'Emps is a table.
'Salary is a column in the Emps table and an edit control.
'Give all employees a 10% raise.
Dim Pay
Dim NewPay
'Go to the last record.
Tables("Emps").MoveLast
'Loop for all records.
While Tables("Emps").RecordValid = TRUE

Pay = Tables("Emps").Fields("Salary")
NewPay = Pay * 1.1
Tables("Emps").Fields("Salary") = NewPay
'Go to the previous record.
Tables("Emps").MovePrevious

Wend
'Update the form with the new value of the
'current record.
Tables("Emps").MoveCurrent
Controls("Salary") = Tables().Fields("Salary")

See Also MoveCurrent, MoveFirst, MoveLast, MoveNext, MovePrevious

Forms(FormName).Refresh
Saves the contents of the form’s controls to the underlying table and then calls Requery to
reload that data and to redraw the screen.
Parameter FormName Name of a form.
Return Value None
Comments Refresh is a method of the Form object.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

429

RemoveAllFilters

RemoveFilter

RemoveRecord

Repaint

RemoveAllFilters
Clears (removes) all active filters so that all records are visible.
Parameter None
Return Value None
Comments RemoveAllFilters is a method of the App object.
Example 'Example of RemoveAllFilter

RemoveAllFilters

See Also AddFilter, RemoveFilter

Tables(TableName).RemoveFilter(ColumnName)
Clears a filter in a table.
Parameter TableName Name of a table.

ColumnName Name of the column to remove the filter condition from.
Return Value None
Comments RemoveFilter is a method of the Table object.
Example 'Example of RemoveFilter

'Emps is a table.
'Salary is a columns in the Emps table.
Tables("Emps").RemoveFilter("Salary")

See Also AddFilter, RemoveAllFilters

Tables(TableName).RemoveRecord(RecordNumber)
Removes a record from a table. It differs from DeleteRecord in that it deletes the record
immediately, not at the next HotSync. Only use this method if the table you are operating on
will not by synchronizeed to a table on the desktop/server, otherwise the deletion will not be
detected. This method does not prompt the user to confirm the deletion.
Parameters TableName

RecordNumber
Name of a table.
Zero-based number of the row to be deleted.

Return Value None
Comments RemoveRecord is a method of the Table object.
Example 'Example of Remove Record 'method

Dim count, i
'Get number of records in the table
count = Tables("emp").Count()
'Iterate through all records and remove
'the first record in the table.
for i=0 to count-1

Tables("emp").RemoveRecord(0)
next i

See Also CreateRecord, DeleteRecord

Forms(FormName).Repaint
Redraws the form and the controls on the screen.

Satellite Forms 8
Development Guide

430

Replace

Requery

ResetCtrls

RestorePrevColor

Parameter FormName Name of a form.
Return Value None
Comments Repaint is a method of the Form object.
Example 'Redraw this form.

Forms().Repaint

Replace(string, originalsubstring, newsubstring)
Replace a substring with another substring, using a case sensitive comparison.
Parameters string The string to trim trailing spaces from.

old The substring to be replaced.
new The new substring to replace the old substring with.

Return Value The modified string with the substring replaced.
Comments Requires the Strings extension.
Example 'Example of Replace

strTest = Replace("The Chicken was chicken", "Chicken", "Fox")
'returns "The Fox was chicken"

See Also LTrim, Trim, RTrim

Forms(FormName).Requery
Reloads controls on the form from the underlying table and then calls Repaint.
Parameter FormName Name of a form.
Return Value None
Comments Requery is a method of the Form object. Any data currently in screen controls

that has not been saved to the underlying tables is lost. This operation, in
essence, is a discard current data and reload operation.

Extension.ResetCtrls()
Sets the index to the first control and cancels Record Advance mode.
Parameters None
Return Value Always TRUE for the Symbol Integrated Scanner control. None for Bar Code

Reader control.
Comments Applies only to the Bar Code Reader and Symbol Integrated Scanner

extensions.
Example 'Example of ResetCtrls()

BarCode1.ResetCtrls()

See Also RecordAdv

RestorePrevColor()
Restores the previous color scheme.
Parameters None
Return Value None

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

431

Right

RestoreScreenDepth

RM_AttachCurrentResource

RM_CloseDatabase

Comments Applies only to the Color Graphics and Graphics extensions.
Example 'Example of RestorePrevColor()

RestorePrevColor()

Right(String, n)
Returns the rightmost n characters of a string.
Parameters String

n
A string.
The number of characters to return.

Return Value String containing the rightmost n characters of the specified string.
See Also Len, Left, Mid operator

RestoreScreenDepth()
Restores Palm screen depth to the value before using SetMaxScreenDepth.
Parameters None
Return Value None
Comments Requires the PxScreen Tool extension.

Caution: You must call this method in the BeforeAppEnd global script.
Otherwise, using a menu crashes the handheld device.

Example 'Example of RestoreScreenDepth()
RestoreScreenDepth()

See Also SetMaxScreenDepth

RM_AttachCurrentResource()
Attaches the current resource to the database.
Parameters None
Return Value 0 if successful; error code if the method fails.
Comments Requires the Puma Resource Manager extension.
Example 'Example of RM_AttachCurrentResource()

Dim AttachSuccess
AttachSuccess = RM_AttachCurrentResource()

RM_CloseDatabase()
Closes the current database.
Parameters None
Return Value 0 if successful; error code if the method fails.
Comments Requires the Puma Resource Manager extension.
Example 'Example of RM_CloseDatabase()

Dim CloseSuccess
CloseSuccess = RM_CloseDatabase()

Satellite Forms 8
Development Guide

432

RM_DetachedResToCurRes

RM_DetachResource

RM_FindResource

RM_FindResourceByIndex

RM_Get1Resource

RM_DetachedResToCurRes()
Moves the detached resource to the current resource.
Parameters None
Return Value None
Comments Requires the Puma Resource Manager extension.
Example 'Example of RM_DetachedResToCurRes()

RM_DetachedResToCurRes()

RM_DetachResource()
Detaches the resource and stores the current pointer.
Parameters None
Return Value 0 if successful; error code if the method fails.
Comments Requires the Puma Resource Manager extension.
Example 'Example of RM_DetachResource()

Dim DetachSuccess
DetachSuccess = RM_DetachResource()

RM_FindResource(ResType, ResourceID)
Finds the current resource by resource type and ID.
Parameters ResType

ResourceID
Return Value
Comments Requires the Puma Resource Manager extension.
Example 'Example of RM_FindResource(ResType, ResourceID)

RM_FindResourceByIndex(ResType, ResourceIndex)
Searches for the resource by type and index number.
Parameters ResType

ResourceIndex
Return Value
Comments Requires the Puma Resource Manager extension.
Example 'Example of RM_FindResourceByIndex(ResType, ResourceIndex)

RM_Get1Resource(ResType, ResourceIndex)
Returns the resource from the most currently opened database.
Parameters ResType

ResourceIndex
Return Value

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

433

RM_GetLastErrorNumber

RM_GetResource

RM_GetResourceByIndex

RM_LockRes

RM_NewResource

Comments Requires the Puma Resource Manager extension.
Example 'Example of RM_Get1Resource(ResType, ResourceIndex)

RM_GetLastErrorNumber()
Returns the last Resource Manager error code.
Parameters None
Return Value The last Resource Manager error code.
Comments Requires the Puma Resource Manager extension.
Example 'Example of RM_GetLastErrorNumber()

Dim LastError
LastError = RM_GetLastErrorNumber()

RM_GetResource(ResType, ResourceID)
Returns the resource specified by the type and ID.
Parameters ResType

ResourceID
Return Value
Comments Requires the Puma Resource Manager extension.
Example 'Example of RM_GetResource(ResType, ResourceID)

RM_GetResourceByIndex(ResType, ResourceIndex)
Returns the resource specified by index..
Parameter ResourceIndex
Return Value
Comments Requires the Puma Resource Manager extension.
Example 'Example of RM_GetResourceByIndex(ResourceIndex)

RM_LockRes()
Locks the current resource in memory.
Parameters None
Return Value None
Comments Requires the Puma Resource Manager extension.
Example 'Example of RM_LockRes()

RM_LockRes()

RM_NewResource(ResType, ResourceID, Size)
Adds a new resource to the open database.

Satellite Forms 8
Development Guide

434

RM_NumResource

RM_OpenDatabase

RM_OpenDBNoOverlay

RM_PassResPtr

Parameters ResType
ResourceID
Size

Return Value
Comments Requires the Puma Resource Manager extension.
Example 'Example of RM_NewResource(ResType, ResourceID, Size)

RM_NumResource()
Returns the number of resources in the current database.
Parameters None
Return Value The number of resources in the current database.
Comments Requires the Puma Resource Manager extension.
Example 'Example of RM_NumResource()

Dim NumResources
NumResources = RM_NumResource()

RM_OpenDatabase(Name, Card_No, mode)
Open the specified resource database.
Parameters Name

Card_No
mode

Return Value
Comments Requires the Puma Resource Manager extension.
Example 'Example of RM_OpenDatabase(Name, Card_No, mode)

RM_OpenDBNoOverlay(Name, Card_No, mode)
Open the specified resource database with no modifications to the overlay.
Parameters Name

Card_No
mode

Return Value
Comments Requires the Puma Resource Manager extension and Palm OS 3.5 or greater.
Example 'Example of RM_OpenDBNoOverlay(Name, Card_No, mode)

RM_PassResPtr()
Returns a pointer to the memory block of a locked resource.
Parameters None
Return Value A pointer to the memory block of a locked resource.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

435

RM_ReleaseResource

RM_RemoveResource

RM_ResizeResource

RM_ResourceInfo

Comments Requires the Puma Resource Manager extension.
Example 'Example of RM_PassResPtr()

Dim ResPtr
ResPtr = RM_PassResPtr()

RM_ReleaseResource()
Releases the current resource.
Parameters None
Return Value 0 if successful; error code if the method fails.
Comments Requires the Puma Resource Manager extension.
Example 'Example of RM_ReleaseResource()

Dim ReleaseSuccess
ReleaseSuccess = RM_ReleaseResource()

RM_RemoveResource(ResourceIndex)
Removes the specified resource from the current database.
Parameter ResourceIndex
Return Value 0 if successful; error code if the method fails.
Comments Requires the Puma Resource Manager extension.
Example 'Example of RM_RemoveResource(ResourceIndex)

RM_ResizeResource(Size)
Resizes the current resource.
Parameter Size
Return Value
Comments Requires the Puma Resource Manager extension.
Example 'Example of RM_ResizeResource(Size)

RM_ResourceInfo(ResourceIndex, Info_to_Return)
Returns information about the specified resource.
Parameters ResourceIndex

Info_to_Return
Return Value Information about the specified resource.
Comments Requires the Puma Resource Manager extension and Palm OS 3.5 or greater.
Example 'Example of RM_ResourceInfo(ResourceIndex, Info_to_Return)

Satellite Forms 8
Development Guide

436

RM_ResTypeInfo

RM_SearchResource

RM_SetResourceInfo

RM_UnlockRes

RM_ResTypeInfo(ResourceIndex)
Returns the resource type.
Parameter ResourceIndex
Return Value The resource type.
Comments Requires the Puma Resource Manager extension.
Example 'Example of RM_ResTypeInfo(ResourceIndex)

RM_SearchResource(ResType, ResourceID)
Searches for a resource by type and local ID.
Parameters ResType

ResourceID
Return Value
Comments Requires the Puma Resource Manager extension and Palm OS 3.5 or greater.
Example 'Example of RM_SearchResource(ResType, ResourceID)

RM_SetResourceInfo()
Sets the resource info for the current resource.
Parameters None
Return Value 0 if successful; error code if the method fails.
Comments Requires the Puma Resource Manager extension.
Example 'Example of RM_SetResourceInfo()

RM_UnlockRes()
Unlocks the current resource. Use only after using RM_LockRes.
Parameters None
Return Value
Comments Requires the Puma Resource Manager extension.
Example 'Example of RM_UnlockRes()

See Also RM_LockRes

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

437

ROUND

RTrim

ScanAvail

Scroll

ROUND(x, decimal)
Rounds a number to nearest decimal place specified.
Parameters x The number to round off.

decimal The number of decimal places to which to round.
Return Value The rounded number.
Comments Requires the Math extension.
Example 'Example of ROUND(x, decimal)

Dim z
Dim y
Dim x
x = 2.3475947495
y = 3
z = ROUND(x, y)

RTrim(string)
Trims trailing spaces from input string.
Parameters String The string to trim trailing spaces from.
Return Value The input string trimmed of trailing spaces.
Comments Requires the Strings extension.
Example 'Example of RTrim

Dim strTest
strTest = RTrim(“ABCD ”)
'Result: strTest contains “ABCD”

See Also LTrim, Trim

Extension.ScanAvail()
Returns the integer byte count in the receive buffer.
Parameters None
Return Value Number of bytes in the receive buffer.
Comments Applies only to the Bar Code Reader and Symbol Integrated Scanner

extensions.
Caution: You must call EnableScanner before using this method with the
Symbol Integrated Scanner. Otherwise, a fatal exception occurs.

Example 'Example of ScanAvail()
Dim x
x = BarCode1.ScanAvail()

See Also EnableScanner

Controls(ControlName).Scroll(NumLines)
The Scroll method is only available for Paragraph controls. It scrolls the control up or down
by NumLines lines.
Parameters ControlName

NumLines
Name of a control.
Number of lines.

Satellite Forms 8
Development Guide

438

Search

Seed_Val

Seed_Val16V

Return Value None
Comments Scroll is a method of the Control object. If NumLines is positive, the

control scrolls down – the text goes up. If NumLines is negative, the control
scrolls up.

Tables(TableName).Search(ColumnName, SearchValue)
Finds an item in a table.
Parameter TableName Name of the desired table.

ColumnName Name of the column to search.
SearchValue The value to search for.

Return Value The row number in the table if the method finds SearchValue; or 65535
(0xFFFF in hexadecimal) if it does not find SearchValue.

Comments Search is a method of the Table object. This function performs a linear
search for the SearchValue in the specified Column, starting at the first row
in the table and iterating through each row until either a matching value is
found or the end or the table is reached. Active table filters are observed, so
only visible records are searched. The table does not need to be sorted for the
Search function to work. However, if your table is sorted on the search
column, consider using the BinarySearch function instead, which is much
faster when dealing with large numbers of records. New in Satellite Forms 8.

Example 'Example of Search method
'Search table for a specific employee.
Dim RowNum
RowNum = Tables("Emps").Search("Name", "John Smith")

See Also BinarySearch, Lookup

Seed_Val()
Returns the seed value entered for use with SRand48.
Parameters None
Return Value The seed value entered for use with SRand48.
Comments Requires the Random Number Generator extension.
Example 'Example of Seed_Val()

Dim z
z = Seed_Val()

See Also Seed48, SRand48

Seed_Val16V(value)
Returns 16 bits of the three orders of the 48-bit seed value used with Seed48.
Parameter value Must be 1, 2 or 3, designating the desired 16-bit order.
Return Value The specified 16-bit order.
Comments Requires the Random Number Generator extension.
Example 'Example of Seed_Val16V(value)

Dim z
z = Seed_Val16V(3)

See Also Seed48

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

439

Seed48

SetBackColor

SetBackColor16

SetDelayToChangeEvent

Seed48(X1, X2, X3)
Sets the 48-bit seed value.
Parameters X1 The first 16 bits of the seed value.

X2 The second 16 bits of the seed value.
X3 The last 16 bits of the seed value.

Return Value None
Comments Requires the Random Number Generator extension.
Example 'Example of Seed48(X1, X2, X3)

Seed48(bitRange1, bitRange2, bitRange3)

See Also SRand48

SetBackColor(BackColor)
Sets the background color to one of the 256 colors in the color table.
Parameter BackColor Integer identifying the desired color.
Return Value None
Comments This method requires Palm OS 3.5 or greater. Use Is35 to test the handheld

device OS version.
Example 'Example of SetBackColor(BackColor)

SetBackColor(114)

See Also Is35

SetBackColor16(Red, Green, Blue)
Sets the 16-bit background color based on the specified RGB values.
Parameters Red Integer Red color value

Green Integer Green color value
Blue Integer Blue color value

Return Value None
Comments Applies only to the Color Graphics extension. This method requires Palm OS

3.5 or greater. Use Is35 to test the handheld device OS version.
Example 'Example of SetBackColor16(Red, Green, Blue)

SetBackColor16(110, 47, 195)

See Also Is35

SetDelayToChangeEvent(Duration)
Sets the delay between the last user interaction with the handheld device and the firing of the
AfterChange event.
Parameter Duration Time in milliseconds.
Return Value None
Comments SetDelayToChangeEvent is a method of the App object. After the user

enters a keystroke, the engine waits the specified duration before firing an
AfterChange event. If the user enters another keystroke before the duration
elapses, the engine waits the full specified duration before firing an
AfterChange event.

Satellite Forms 8
Development Guide

440

SetFillColor

SetFocus

SetFocus (Bar Code Reader)

SetFocus (Symbol Integrated Scanner)

SetFillColor(Color)
Sets the Fill color to one of the 256 colors in the color table.
Parameter Color Integer identifying the desired color.
Return Value None
Comments Applies only to the Graphics and Color Graphics extensions. This method

requires Palm OS 3.5 or greater. Use Is35 to test the handheld device OS
version.

Example 'Example of SetFillColor(Color)
SetFillColor(255)

See Also Is35

Controls(ControlName).SetFocus
Puts the cursor in the specified control.
Parameter ControlName Name of a control.
Return Value None
Comments SetFocus is a method of the Control object. It applies only to the Edit and

Paragraph controls.
If you are using an OnValidate event handler to validate user input and
validation fails, you may want to use this method to place the cursor on the
offending control. In the case of other controls, which do not use cursors, an
alternative is to use the Visible property to flash the offending control a few
times to attract the user's attention.

Extension.SetFocus(str)
Sets focus to the Bar Code Reader control after scan.
Parameter str "On" Moves cursor to the Bar Code Reader control after scan.

"Off" Leaves cursor on the current control after scan.
Return Value None
Comments Applies only to the Bar Code Reader extension. Default="Off"
Example 'Example of SetFocus(str)

BarCode1.SetFocus("On")

Extension.SetFocus(str)
Sets focus to the desired control after scan.
Parameter str "On" Moves the cursor to the next edit control to be scanned.

"Off" Moves the cursor to the Symbol Integrated Scanner control
after scan.

Return Value None
Comments Applies only to the Symbol Integrated Scanner extension.
Example 'Example of SetFocus(str)

SIScanner1.SetFocus("On")

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

441

SetFont

SetForeColor

SetForeColor16

SetIndex

SetFont(font)
Sets font style for the DrawText method.
Parameter font Integer identifying the desired font. Valid values are: 0 = stdFont,

1 = boldFont, 2 = largeFont, 3 = symbolFont, 4 = symbol1Font,
5 = symbol7Font, 6 = ledFont.

Return Value None
Comments Applies only to the Graphics and Color Graphics extensions.
Example 'Example of SetFont(font)

SetFont(1)

See Also DrawText

SetForeColor(ForeColor)
Sets the foreground color to one of the 256 colors in the color table.
Parameter ForeColor Integer identifying the desired color.
Return Value None
Comments This method requires Palm OS 3.5 or greater. Use Is35 to test the handheld

device OS version.
Example 'Example of SetForeColor(ForeColor)

SetForeColor(255)

See Also Is35

SetForeColor16(Red, Green, Blue)
Sets the 16-bit foreground color based on the specified RGB values.
Parameters Red Integer Red color value.

Green Integer Green color value.
Blue Integer Blue color value.

Return Value None
Comments Applies only to the Color Graphics extension. This method requires Palm OS

3.5 or greater. Use Is35 to test the handheld device OS version.
Example 'Example of SetForeColor16(Red, Green, Blue)

SetForeColor16(255, 255, 205)

See Also Is35

Extension.SetIndex(int)
Bar Code Reader: Sets the index of the current control. Uses the next control for the next scan.
Symbol Integrated Scanner: Sets the index of the next edit control to scan.
Parameter int Index of the desired control.
Return Value None
Comments Applies only to the Bar Code Reader and Symbol Integrated Scanner

extensions.
Example 'Example of SetIndex(int)

BarCode1.SetIndex(1)

Satellite Forms 8
Development Guide

442

SetMaxScreenDepth

SetPaintKeyCode

SetPattern

SetPenColor

SetMaxScreenDepth()
Sets the Palm screen to the maximum screen depth. Use RestoreScreenDepth to restore
to the screen to its original depth. You can use this method to enable grayscale support on a
monocrhome Palm handheld.
Parameters None
Return Value None
Comments Requires the PxScreen Tool extension.

Caution: You must call this method in the AfterAppStart global script.
Otherwise, using a menu crashes the handheld device.

Example 'Example of SetMaxScreenDepth()
SetMaxScreenDepth()

See Also RestoreScreenDepth

SetPaintKeyCode(KeyCode)
Specifies a virtual keycode to be sent to your app by the extension as a signal to redraw your
graphics.
Parameters KeyCode An integer keycode value
Return Value None
Comments Applies only to the Color Graphics extension, and to the Pocket PC platform

only. This function allows you to gain greater control over the painting of
custom grpahics on your form, by signalling when to redraw your graphics. The
extension will post this keycode when your form should be redrawn. Trap this
keycode in the OnKey event, and redraw your custom graphics in response.

Example

SetPattern(F0,F1,F2,F3)
Sets the 8 x 8 custom Fill pattern.
Parameters F0 Integer pattern value.

F1 Integer pattern value.
F2 Integer pattern value.
F3 Integer pattern value.

Return Value None
Comments Applies only to the Graphics and Color Graphics extensions. Integer parameter

values create an 8x8 bitmap pattern.
Example 'Example of SetPattern(F0,F1,F2,F3)

SetPattern(5,5,2,3)

SetPenColor(Color)
Sets the Pen color to one of the 256 colors in the color table.
Parameter Color Integer identifying the desired color.
Return Value None

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

443

SetPort

SetPosition

SetPrinter

Comments Applies only to the Graphics and Color Graphics extensions.
Example 'Example of SetPenColor(Color)

SetPenColor(55)

Extension.SetPort(baud, HwHs, Data, Stop, Parity)
Configures the serial port.
Parameters baud Sets Baud rate (i.e. 9600)

HwHs Handshake: TRUE=CTS/RTS; FALSE = Xon/Xoff
Data 7 or 8 data bits
Stop 1 or 2
Parity 0=None; 1=Even; 2=Odd

Return Value Always TRUE for Symbol Integrated Scanner extension. None for other
extensions.

Comments Applies only to the Bar Code Reader, Printer, and Symbol Integrated Scanner
extensions. Default settings: SetPort(9600, TRUE, 8, 1, 0)
Note: The Symbol Integrated Scanner extension ignores this method.

Example 'Example of SetPort(baud, HwHs, Data, Stop, Parity)
BarCode1.SetPort(9600, TRUE, 7, 1, 0)

Controls(ControlName).SetPosition(cX, cY, cW, cH)
Modifies the current position (cX, cY) and size (cW, cH) of a control.
Parameters ControlName

cX
cY
cW
cH

Name of a control.
The new top left X coordinate of the control.
The new top left Y coordinate of the control.
The new width of the control.
The new height of the control.

Return Value None
Comments SetPosition is a method of the Control object. This method is useful when

combined with the new Dynamic Input Area support for PalmOS that enables
you to move and resize controls on a form in response to changes in the form
size or orientation.

Example 'example of control GetPosition and SetPosition methods
Dim cX, cY, cW, cH
'obtain the current location and size of Button1
Button1.GetPosition(cX, cY, cW, cH)
'move Button1 control down 10 pixels, right 10 pixels
'and widen by 5 pixels, increase height by 5 pixels
Button1.SetPosition(cX+10, cY+10, cW+5, cH+5)

See Also GetPosition

SetPrinter(ID)
Only the Seiko DPU-414, Epson compatible printer is defined. No additional printers are
supported. Must be set to 0.
Parameter ID ID of the printer to use . No additional printers are supported.

Must be set to 0.

Satellite Forms 8
Development Guide

444

SetSelection

SetTermChar

SetTextColor

SetTextColor16

Return Value None
Comments Requires the Printer extension.

Controls(ControlName).SetSelection(StartSel, EndSel)
Highlights text in a Paragraph or Edit control.
Parameters ControlName

StartSel
EndSel

Name of a control.
Offset of beginning of selection.
Offset at end of selection.

Return Value None
Comments SetSelection is a method of the Control object. Set the selection using

the StartSel and EndSel parameters. StartSel contains the offset of the
beginning of the selection – the offset of the first character in a control is 0 –
and EndSel contains the offset to the character following the end of the
selection. For example, if a control contains the string “ABCD”, to highlight the
“BC” portion, call this method with StartSel = 1 and EndSel = 3.

Extension.SetTermChar(chr(x))
Sets termination character to use.
Parameter x The desired termination character.
Return Value Always TRUE for Symbol Integrated Scanner extension. None for Bar Code

Reader extension.
Comments Applies only to the Bar Code Reader and Symbol Integrated Scanner

extensions. Default is carriage return (\n).
Note: The Symbol Integrated Scanner extension ignores this method.

Example 'Example of SetTermChar(chr(x))
BarCode1.SetTermChar(chr("\n"))

SetTextColor(TextColor)
Sets the text color to one of the 256 colors in the color table.
Parameter ForeColor Integer identifying the desired color.
Return Value None
Comments Applies only to the Color Graphics extension. This method requires Palm OS

3.5 or greater. Use Is35 to test the handheld device OS version.
Example 'Example of SetTextColor(TextColor)

SetTextColor(2)

See Also Is35

SetTextColor16(Red, Green, Blue)
Sets the 16-bit text color based on the specified RGB values.
Parameters Red Integer Red color value.

Green Integer Green color value.
Blue Integer Blue color value.

Return Value None

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

445

SetTimer

SetVisible

Show

Comments Applies only to the Color Graphics extension. This method requires Palm OS
3.5 or greater. Use Is35 to test the handheld device OS version.

Example 'Example of SetTextColor16(Red, Green, Blue)
SetTextColor16(0, 0, 255)

See Also Is35

SetTimer(Interval)
Turns on the periodic timer and sets it with the specified period.
Parameter Interval The interval, in milliseconds, between timer events.
Return Value None
Comments SetTimer is a method of the App object. When you turn on the timer , the first

OnTimer event occurs Interval milliseconds later. Subsequently, every Interval
milliseconds an OnTimer event fires. To stop the timer, use KillTimer.
Use OnTimer for tasks that should run in the background – not interfere with
user input – or to check (poll) hardware periodically.

See Also KillTimer

Extension.SetVisible(boolean)
Sets the position of the control.
Parameter boolean 0 = Control is invisible.

1 = Control is visible.
Return Value None
Comments Applies only to the Slider and Color Slider controls.
Example 'Example of SetVisible(boolean)

ColorSlider1.SetVisible(1)

Object.Show
Makes an object visible.
Parameter Object Name of an object
Return Value None
Comments Show is a method of the Form object. Using the Show method of a form is

equivalent to jumping to the form. The jump occurs after the script has
completely executed. This means that you can reference controls in the current
form even after you use Show, as shown in the example for this method.

Example 'Example of the Show method
'InputA and OutputA are edit controls in
'the current form.
Emps is another form.
'Jump to the Emps form after doing a calculation.
Forms("Emps").Show
OutputA = InputA * 10
Delay(2000)

See Also Visible

Satellite Forms 8
Development Guide

446

SIN

SINH

SkipAdvance

SldGetPosition

SIN(x)
Calculates the sine of the specified number.
Parameter x The number for which to calculate the sine.
Return Value The sine of the specified number.
Comments Requires the Math extension.
Example 'Example of SIN(x)

Dim z
z = ASIN(x)

SINH(x)
Calculates the hyperbolic sine of the specified number.
Parameter x The number for which to calculate the hyperbolic sine.
Return Value The hyperbolic sine of the specified number.
Comments Requires the Math extension.
Example 'Example of SINH(x)

Dim z
z = SINH(x)

Extension.SkipAdvance(t/f)
Indicates whether to stay on same control for the next scan. For the Symbol Integrated
Scanner extension, forces Process re-scan the last control.
Parameter t/f TRUE = Stays on same control for next scan; FALSE =

Advances to the next control for the next scan.
Return Value Always returns TRUE for the Symbol Integrated Scanner control. None for Bar

Code Reader control.
Comments Applies only to the Bar Code Reader and Symbol Integrated Scanner

extensions.
Example 'Example of SkipAdvance(t/f)

BarCode1.SkipAdvance(TRUE)

See Also Process

Extension.SldGetPosition()
Returns the current position of the control.
Parameters None
Return Value The current position of the control.
Comments Applies only to the Slider and Color Slider controls.
Example ‘Example of SldGetPosition()

Dim x
x = ColorSlider1.SldGetPosition()

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

447

SldSetMinMax

SldSetPosition

SQROOT

SqrRoot

SRand48

Extension.SldSetMinMax(min, max)
Sets the minimum and maximum values.
Parameters Min Integer minimum slider value.

Max Integer maximum slider value.
Return Value None
Comments Applies only to the Slider and Color Slider controls.
Example 'Example of SldSetMinMax(min, max)

ColorSlider1.SldSetMinMax(0, 50)

Extension.SldSetPosition(n)
Sets the position of the control.
Parameter n Desired slider position.
Return Value None
Comments Applies only to the Slider and Color Slider controls.
Example 'Example of SldSetPosition(n)

ColorSlider1.SldSetPosition(23)

SQROOT(x)
Calculates the positive square root of the specified number.
Parameter x The number for which to calculate the positive square root.
Return Value The positive square root of the specified number.
Comments Requires the Math extension.
Example 'Example of SQROOT(x)

Dim z
z = SQROOT(x)

SqrRoot(x)
Calculates the square root of the specified number.
Parameter x The number for which to calculate the square root.
Return Value The square root of the specified number.
Comments Requires the Square Root extension.
Example 'Example of SqrRoot(x)

Dim z
z = SqrRoot(x)

SRand48(value)
Assigns the highest 32 bits of X[0] to the specified integer value. Assigns the remaining 16
bits 0x330E.
Parameter value The desired integer value.
Return Value None
Comments Requires the Random Number Generator extension.

Satellite Forms 8
Development Guide

448

Str

StrCompare

StrCompSort

Example 'Example of SRand48(value)
SRand48(3532)

See Also Seed48

Str(Variable)
Converts an integer or floating-point number to a string.
Parameter Variable Integer or floating-point value to be converted to a string value.
Return Value String representation of the input value.
Comments Use the Str operator to force a string conversion.
Example 'Example of Str conversion

'InputA through InputD are edit controls
'not tied to any column.
'Try comparing the values 10 and 4, first
'as numbers, then as strings.

If Float(InputA) > Float(InputB) Then
MsgBox("Greater Float is " & InputA)

ElseIf Float(InputB) > Float(InputA) Then
MsgBox("Greater Float is " & InputB)

Else
MsgBox("Floats are equal")

EndIf
If Str(InputA) > Str(InputB) Then

MsgBox("Greater String is " & InputA)
ElseIf Str(InputB) > Str(InputA) Then

MsgBox("Greater String is " & InputB)
Else

MsgBox("Strings are equal")
EndIf

See Also Float, Int, Int64

StrCompare(string1, string2)
Performs a case sensitive comparison of two strings.
Parameter String1 The first string to compare.

String2 The second string to compare.
Return Value Returns True if the strings match exactly, False if not.
Comments Requires the Strings extension.
Example 'Example of StrCompare

Dim match
match = StrCompare(“ABCD”, “abCD”)
'Result: match is False

See Also StrCompSort

StrCompSort(string1, string2)
Performs a case sensitive comparison of two strings.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

449

String

StripTerm

SU_BlockAllHotKeys

Parameter String1 The first string to compare.
String2 The second string to compare.

Return Value Returns 0 if the strings match exactly, returns a positive number if String1 sorts
after String2 alphabetically, returns a negative number if String1 sorts before
String2 alphabetically.

Comments Requires the Strings extension.
Example 'Example of StrCompSort

Dim match
match = StrCompSort(“ABCD”, “abCD”)
'Result: match contains 1

See Also StrCompare

String(length, character)
Returns a String containing a repeating character string of the length specified.
Parameter Length Length of desired string of repeating characters.

Character Character to repeat in returned string.
Return Value String of repeating characters of desired length.
Comments Requires the Strings extension.
Example 'Example of String function

MsgBox(String(5, “G”))
‘Displays MsgBox containing “GGGGG”

Extension.StripTerm(t/f)
Indicates whether to strip the termination character from the end of the string GetScan
returns.
Parameter t/f TRUE = Strips termination character; FALSE = Leaves the

termination character in place.
Return Value None
Comments Applies only to the Bar Code Reader and Symbol Integrated Scanner

extensions. Default = TRUE.
Note: The Symbol Integrated Scanner extension ignores this method.

Example 'Example of StripTerm(t/f)
BarCode1.StripTerm(TRUE)

See Also GetScan

SU_BlockAllHotKeys(enable)
Blocks all hotkey keypresses, but does not send a keypress that can be caught in the OnKey
event.
Parameter enable True to enable, False to disable
Return Value None
Comments Requires the SysUtils extension.
Example SU_BlockAllHotKeys(true)

See Also

Satellite Forms 8
Development Guide

450

SU_CheckSystemPassword

SU_ClipboardTextGet

SU_ClipboardTextSet

SU_DelAppPref

SU_GetAppPref

SU_CheckSystemPassword(password)
Verifies if the passed string is the current system password or not.
Parameter password String containing password to verify.
Return Value Returns 1 (True) if password matches, or 0 (False) if it does not match.
Comments Requires the SysUtils extension.
Example isPassword = SU_CheckSystemPassword(“password”)

See Also

SU_ClipboardTextGet()
Get the current text clip from the system clipboard.
Parameter None
Return Value Returns a string containing the current system clipboard text.
Comments Requires the SysUtils extension.
Example cliptext = SU_ClipboardTextGet()

See Also

SU_ClipboardTextSet(cliptext)
Set the system clipboard text clip to the passed string.
Parameter cliptext String of text to set the clipboard with.
Return Value None
Comments Requires the SysUtils extension.
Example SU_ClipboardTextSet(“important text here”)

See Also

SU_DelAppPref(CreatorID, prefindex)
Deletes the saved application preference setting.
Parameter CreatorID 4-character case-sensitive application Creator ID string.

prefindex Positive 16-bit integer specifying preference “slot” or “row”.
Return Value None
Comments Palm OS only. Requires the SysUtils extension. Palm OS application

preferences are stored in the Saved Preferences system database, referenced
by Creator ID and index. Think of the prefindex as a “slot” or “row” number.
Think of a preference setting as an equivalent to a Windows registry entry.
Preferences can be used to store persistent information outside of your data
tables. For an equivalent function on the Pocket PC, see SU_RegDeleteKey.

Example SU_DelAppPref(“MYAP”, 50)

See Also

SU_GetAppPref(CreatorID, prefindex)
Returns the saved preference value for the given Creator ID and prefindex.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

451

SU_GetBatteryPercent

SU_GetDeviceID

SU_GetDeviceModel

Parameter CreatorID 4-character case-sensitive application Creator ID string.
prefindex Positive 16-bit integer specifying preference “slot” or “row”.

Return Value String of text stored in the specified Saved Preferences “slot”.
Comments Palm OS only. Requires the SysUtils extension. Palm OS application

preferences are stored in the Saved Preferences system database, referenced
by Creator ID and index. Think of the prefindex as a “slot” or “row” number.
Think of a preference setting as an equivalent to a Windows registry entry.
Preferences can be used to store persistent information outside of your data
tables. For an equivalent function on the Pocket PC, see SU_RegReadKey.

Example preftext = SU_GetAppPref(“MYAP”, 50)

See Also

SU_GetBatteryPercent()
Returns current battery charge level as a percentage (0-100) of full.
Parameter None
Return Value Current battery charge level as a percentage (0-100) of full.
Comments Requires the SysUtils extension.
Example battlevel = SU_GetBatteryPercent()

See Also

SU_GetDeviceID()
Returns the device unique ID string.
Parameter None
Return Value String containing the device unique ID.
Comments Requires the SysUtils extension. Not all Palm OS devices have a unique ID

string. For PalmOS devices that do not have a unique device ID, the string "No
FlashID" is returned, otherwise the device's 12 character alphanumeric unique
ID is returned. For Pocket PC 2002/2003 devices, the device ID is usually 13
characters long, but for WM5/WM6 devices it is much longer at 40 characters.

Example devID = SU_GetDeviceID()

See Also

SU_GetDeviceModel()
Returns the device model string to help identify the device.
Parameter None
Return Value String containing the device model identifier.
Comments Requires the SysUtils extension. For PalmOS devices, this returns the case

sensitive 4-character CompanyID (eg. “Palm”) plus the 4-character Device
Model ID (eg. “D060”). Some very old PalmOS devices may not have a Model
ID. For PocketPC devices this returns the manufacturer's device model
identification string (eg. “Symbol MC50”).

Example devModel = SU_GetDeviceModel()

See Also

Satellite Forms 8
Development Guide

452

SU_GetMemInfo

SU_GetOSVersion

SU_GetOwnerName

SU_GetPlatform

SU_GetPluggedIn

SU_GetMemInfo(memorytype)
Returns the amount of available memory on the device.
Parameter memorytype Pass a memorytype value of 0 for Free RAM, or 1 for RAM size,

or 2 for ROM size.
Return Value Available memory in kilobytes (KB).
Comments Requires the SysUtils extension. For Pocket PC, the ROM size reported is

actually the RAM size (specifying RAM or ROM returns the same value).
Example 'Get the amount of free RAM available

membytes = SU_GetMemInfo(0)

See Also

SU_GetOSVersion()
Returns the device operating system version string.
Parameter None
Return Value String containing the device OS version.
Comments Requires the SysUtils extension.
Example OSver = SU_GetOSVersion()

See Also

SU_GetOwnerName()
Returns the device owner name.
Parameter None
Return Value String containing the device owner name.
Comments Requires the SysUtils extension. For Palm OS devices, this returns the

HotSync user name, the same as the GetUserName script function. For Pocket
PC devices, this owner name is different than the value returned by the
GetUserName script.

Example owner = SU_GetOwnerName()

See Also

SU_GetPlatform()
Returns the device OS platform string, either PALMOS or POCKETPC.
Parameter None
Return Value Device OS platform string, either PALMOS or POCKETPC.
Comments Requires the SysUtils extension. Use this function to distinguish if the current

device runs on the Palm OS or Pocket PC platform.
Example strplatform = SU_GetPlatform()

See Also

SU_GetPluggedIn()
Returns whether or not the device is currently plugged in to AC power.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

453

SU_HideStartIcon

SU_HotSync

SU_LaunchApp

Parameter None
Return Value Returns 1 (true) if AC power is currently connected or 0 (false) if not.
Comments Requires the SysUtils extension.
Example pluggedin = SU_GetPluggedIn()

See Also

SU_HideStartIcon(enable)
Hides the Start icon in the top left of the Windows Mobile screen.
Parameter enable True to enable, False to disable
Return Value None
Comments Requires the SysUtils extension. Windows Mobile platform only. Hides or

shows the Start icon in the top left corner of the screen. This function may not
be effective on all devices, as the device manufacturer may have modified the
OS API that controls this function.

Example 'hide the start icon
SU_HideStartIcon(true)

See Also

SU_HotSync()
Initiates a standard cradle/cable HotSync.
Parameter None
Return Value None
Comments Requires the SysUtils extension. Palm OS platform only. Initiates HotSync by

enqueuing HotSync virtual keypress (decimal 521).
Example 'start cradle HotSync

SU_HotSync()

See Also

SU_LaunchApp(strFilename, strParam)
Launch a specified application, and pass an optional parameter.
Parameter strFilename File name of the application to launch.

strParam Optional parameter to pass to launched application.
Return Value Returns 0 if the application launched okay, or an error code otherwise.
Comments Requires the SysUtils extension. For the Palm OS platform, the application

name is case sensitive and must not include any path (only applications in
internal memory can be launched). If you specify a parameter string, it is
passed to the launching app as the command parameter block. For the Pocket
PC platform, specify the full path and name of the application, or document, or
URL to launch. If you specify a parameter string, it is passed as a
commandline parameter when launching the application.

Satellite Forms 8
Development Guide

454

SU_LaunchAppAtEvent

SU_LaunchAppAtTime

Example 'launch calculator
If SU_GetPlatform() = “PALMOS” then

SU_LaunchApp(“Other App”, “”)
Else

SU_LaunchApp(“\Program Files\Other App\Other App.exe”, “”)
EndIf

See Also

SU_LaunchAppAtEvent(strFilename, event)
Launch a specified application/document/URL at a specified system event.
Parameter strFilename Full path and file name of the application to launch.

event Numeric system event code for 0-12, per event table below.
Return Value Returns 0 if the application launched okay, or an error code otherwise.
Comments Requires the SysUtils extension. Pocket PC platform only. Specify the full path

and name of the application, or document, or URL to launch when the specified
system event occurs. Supported Pocket PC system events include:
Event Code Event Description
0 EVENT_NONE - used to cancel an existing event
1 EVENT_TIME_CHANGE
2 EVENT_SYNC_END
3..6 not supported by Pocket PC OS
7 EVENT_DEVICE_CHANGE
8 not supported by Pocket PC OS
9 EVENT_RS232_DETECTED
10 EVENT_RESTORE_END
11 EVENT_WAKEUP
12 EVENT_TZ_CHANGE

Example 'launch calculator when device wakes up (event code 11)
SU_LaunchAppAtEvent(“\Windows\calc.exe”, 11)

See Also

SU_LaunchAppAtTime(strFilename, systemdate)
Launch a specified application/document/URL at a specified date and time.
Parameter strFilename Full path and file name of the application to launch.

systemdate Date and time in SatForms system date format.
Return Value Returns 0 if the application launched okay, or an error code otherwise.
Comments Requires the SysUtils extension. Pocket PC platform only. Specify the full path

and name of the application, or document, or URL to launch at the specified
date and time. Specify the date and time using SatForms system date format,
which is the number of seconds since 00:00:00 Jan 1, 1904, encompassing
both a date and time into a single value.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

455

SU_ModemHotSync

SU_ParseDelimText

SU_PasteChars

SU_PlaySoundFile

Example 'launch calculator at 4:15 PM today
'there are 86400 seconds per day
dim seconds
seconds = (GetSysDate * 86400) + TimeToSysTime(“4:15pm”)
SU_LaunchAppAtTime(“\Windows\calc.exe”, seconds)

See Also

SU_ModemHotSync()
Initiates standard modem/network hotsync.
Parameter None
Return Value None
Comments Requires the SysUtils extension. Palm OS platform only. Initiates modem or

network HotSync by enqueuing modem HotSync virtual keypress (decimal
522).

Example 'start modem HotSync
SU_ModemHotSync()

See Also

SU_ParseDelimText(string, chunkpos, delimiter)
Returns a chunk of data in a string of delimited items.
Parameter string Text string of delimited items.

chunkpos Item position in delimited string (0-based).
delimiter Character used to delimit items.

Return Value String containing desired item from delimited string.
Comments Requires the SysUtils extension.
Example dim item

item = SU_ParseDelimText("ABC#DEF#GHIJ#KLMN#OPQ", 2, "#")
'item contains "GHIJ"

See Also

SU_PasteChars(string)
Paste a string to the keyboard input queue as though it was typed in.
Parameter string String of text.
Return Value None
Comments Requires the SysUtils extension. Input goes to the control that has the focus.

Use this function for regular printable characters, and use
SU_QueueVirtualKey for virtual keys.

Example SU_PasteChars("Hello World")

See Also

SU_PlaySoundFile(filename, waituntildone)
Plays a WAV audio file on Windows Mobile devices.
Parameter filename Path and name of WAV file to play.

Satellite Forms 8
Development Guide

456

SU_PowerOff

SU_QueueVirtualKey

SU_RegDeleteKey

waituntildone True or False to wait until the sounds is done playing before
returning.

Return Value None
Comments Requires the SysUtils extension. Windows Mobile platform only. Use this

method to play WAV audio files.
Example SU_PlaySoundFile(GetAppPath & "soundfile.WAV", false)

See Also

SU_PowerOff()
Power off the device now, as if the power button had been pressed.
Parameter None
Return Value None
Comments Requires the SysUtils extension. On the Palm OS platform, this function works

by enqueuing a power button keypress (decimal 520).
Example 'power off the device right now

SU_PowerOff()

See Also

SU_QueueVirtualKey(keycode)
Post a virtual key to the keyboard input queue.
Parameter keycode Virtual character keycode.
Return Value None
Comments Requires the SysUtils extension. Input goes to the control that has the focus.

Use this function for virtual keys; for regular printable characters use
SU_PasteChars.

Example 'example to post a backspace keypress into Pocket PC key queue
SU_QueueVirtualKey(8)

See Also

SU_RegDeleteKey(hive, key)
Delete specified key and all settings within it from the registry.
Parameter hive String containing base registry hive.

key String indicating key to delete (including all settings & subkeys)
Return Value Returns 0 if no error, or error code otherwise.
Comments Requires the SysUtils extension. Pocket PC only. The base registry hive can

be one of these case sensitive strings: "HKEY_LOCAL_MACHINE",
"HKEY_CURRENT_USER", "HKEY_CLASSES_ROOT", or "HKEY_USERS".
The Key must NOT begin with a slash character. For Palm OS equivalent use
SU_DelAppPref.

Example 'delete "HKEY_LOCAL_MACHINE\Software\MyCompany\MyApp" key
err = SU_RegDeleteKey("HKEY_LOCAL_MACHINE",
"Software\MyCompany\MyApp")

See Also

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

457

SU_RegReadKey

SU_RegWriteKey

SU_Reset

SU_RegReadKey(hive, keytype, key, setting)
Read specified key setting value from the registry.
Parameter hive String containing base registry hive.

keytype 0 for REG_SZ strings, or 1 for REG_DWORD numeric values.
key String indicating subkey to read from.
setting String containing specific setting within the subkey to read.

Return Value Returns the value stored in that specified key and setting.
Comments Requires the SysUtils extension. Pocket PC only. The base registry hive can

be one of these case sensitive strings: "HKEY_LOCAL_MACHINE",
"HKEY_CURRENT_USER", "HKEY_CLASSES_ROOT", or "HKEY_USERS".
The Key and Setting must NOT begin with a slash character.

Example 'read the HKEY_LOCAL_MACHINE\Software\Microsoft\Windows CE
Services\FileSyncPath value
value = SU_RegReadKey("HKEY_LOCAL_MACHINE", 0,
"Software\Microsoft\Windows CE Services", "FileSyncPath")

See Also

SU_RegWriteKey(hive, keytype, key, setting, value)
Write specified key setting value to the registry.
Parameter hive String containing base registry hive.

keytype 0 for REG_SZ strings, or 1 for REG_DWORD numeric values.
key String indicating subkey to write to.
setting String containing specific setting within the subkey to write to.
value String value to store in specified key setting.

Return Value Returns 0 if no error, or error code otherwise.
Comments Requires the SysUtils extension. Pocket PC only. The base registry hive can

be one of these case sensitive strings: "HKEY_LOCAL_MACHINE",
"HKEY_CURRENT_USER", "HKEY_CLASSES_ROOT", or "HKEY_USERS".
The Key and Setting must NOT begin with a slash character.

Example 'write user name string to
HKEY_LOCAL_MACHINE\Software\MyCompany\MyApp\UserName
err = SU_RegWriteKey("HKEY_LOCAL_MACHINE", 0,
"Software\MyCompany\MyApp", "UserName", "Joe User")

See Also

SU_Reset()
Soft reset the device now.
Parameter None
Return Value None
Comments Requires the SysUtils extension. Performs a soft reset as if the reset pin had

been depressed.
Example 'soft reset the device right now

SU_Reset()

See Also

Satellite Forms 8
Development Guide

458

SU_SetAppPref

SU_SetAutoOffTime

SU_SetDeviceDateTime

SU_SetHotKey

SU_SetAppPref(creatorIDstring, prefindex, prefval)
Saves the preference value for the supplied creatorID and pref index.
Parameter CreatorID 4-character case-sensitive application Creator ID string.

prefindex Positive 16-bit integer specifying preference “slot” or “row”.
prefval String value to write into specified preference slot.

Return Value None
Comments Palm OS only. Requires the SysUtils extension. Palm OS application

preferences are stored in the Saved Preferences system database, referenced
by Creator ID and index. Think of the prefindex as a “slot” or “row” number.
Think of a preference setting as an equivalent to a Windows registry entry.
Preferences can be used to store persistent information outside of your data
tables. For an equivalent function on the Pocket PC, see SU_RegWriteKey.

Example 'store value in prefindex 50 for creatorID "MYAP"
SU_SetAppPref("MYAP", 50, "Joe User")

See Also

SU_SetAutoOffTime(duration)
Sets the auto-off timer on the Palm, in seconds.
Parameter duration Duration in seconds to set the auto-off timer to.
Return Value The previous auto-off timer value is returned.
Comments Requires the SysUtils extension. Palm OS only. A value of 0 indicates 'never

turn off automatically'.
Example 'set auto-off timer to 30 seconds

SU_SetAutoOffTime(30)

See Also

SU_SetDeviceDateTime(seconds)
Set the current device date and time.
Parameter seconds Current date andtime in SatForms system date format.
Return Value None
Comments Requires the SysUtils extension. Specify the date and time using SatForms

system date format, which is the number of seconds since 00:00:00 Jan 1,
1904, encompassing both a date and time into a single value.

Example 'set system date and time to values in edDate and edTime controls
'there are 86400 seconds per day
dim seconds
seconds = (DateToSysDate(edDate)*86400) + TimeToSysTime(edTime)
SU_SetDeviceDateTime(seconds)

See Also

SU_SetHotKey(keycode, enable)
Trap a hotkey keypress so that it sends a keypress that can be caught in the OnKey event.
Parameter keycode Keycode for the virtual key keypress you want to trap.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

459

SU_SysIdleTimerReset

SU_TapScreen

Sub

enable True to enable or False to disable.
Return Value None
Comments Requires the SysUtils extension. Pocket PC only. Normally, the Pocket PC OS

processes hotkeys before they get to your application. When this function is
enabled for a specific hotkey(s), the hotkey keypress will generate a key event
that you can trap and handle in the OnKey event. The hotkey virtual keycode
will be passed to the OnKey event in both the ASCII and VirtKey variables of
the GetLastKey function.

Example 'trap hotkey VK_APP1 (decimal 193)
SU_SetHotKey(193, true)

See Also

SU_SysIdleTimerReset()
Reset the system idle timer to prevent the device from dozing off into sleep mode.
Parameter None
Return Value None
Comments Requires the SysUtils extension.
Example SU_SysIdleTimerReset()

See Also

SU_TapScreen(x, y)
Enqueue a virtual tap on the screen at the given X, Y position.
Parameter X The horizontal (X) screen coordinate of the tap.

Y The vertical (Y) screen coordinate of the tap.
Return Value None
Comments Requires the SysUtils extension. Note that on the Palm OS platform, the virtual

tap on some controls may not have the same effect as an actual tap.
Example SU_TapScreen(10, 20)

See Also

Sub name [(arglist)]
Defines a global script subroutine that can take optional parameters and perform your user-
defined statements. It does not returns a result. Global functions are available to all forms and
scripts in your application.
Parameters optional

arguments
Return Value Value defined by the subroutine.

Satellite Forms 8
Development Guide

460

Sum

SysDateToDate

Comments Applies to the entire application. In the Global script section of the application
property explorer window, there are two Global Funcs & Subs sections,
labeled (shared) and (private). The (shared)section allows you to write global
scripts that are shared between all platform targets in the application, for
example a Palm target and a Pocket PC target.The (private) section allows you
to write global scripts that exist in the current target only, so that you may have
script that apply to the current target platform only. This enables you to have
common code between targets in the (shared) section, and platform-specific
code in the (private) section. One common use for this capability is to set a
global variable to a specific value that indicates which platform your application
is running on, thus enabling formlevel scripts to take appropriate action based
on the current platform target.

Example Sub name [(arglist)]
[statements]
[exit]
[statements]
End Sub

Remarks
• You can define local variables using the Dim keyword. The value of local variables in a Sub is not

preserved between calls to the routine.
• You cannot define a nested subroutine within a Sub or a Function.
• You can call a subroutine using its name and its variable. Unlike Visual Basic, you do not need to use the

keyword Call.
• Unlike Visual Basic, the Exit keyword cannot be fully qualified. In Visual Basic, you have to use Exit

Sub to exit the routine.
• Functions and subroutines can call themselves repeatedly (recursive). Do so cautiously because excessive

recursion can lead to stack overflow.

See Also Function

Tables(TableName).Sum(ColumnName)
Returns the sum of values in a specified column for all records in a table.
Parameters TableName

ColumnName
Name of a table.
Name of a numeric column in the table.

Return Value Sum of the values of the specified column for all records in the table.
Comments Sum is a method of the Table object. If a filter is in place that limits the table to

certain records, only those records are used to compute the sum.
Example 'Example of Sum method

'OutputA is an edit control.
OutputA = Tables("Emps").Sum("Salary")

See Also Count

SysDateToDate(NumDays)
Converts days since January 1, 1904, to a user-readable date.
Parameter NumDays Number of days since January 1, 1904.
Return Value User-readable date in format specified in the handheld device preferences.
Comments SysDateToDate is a method of the App object.
See Also DateToSysDate, GetSysDate, GetSysTime, SysTimeToTime, TimeToSysTime

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

461

SystemDateFormat

SystemTimeFormat

SysTimeToTime

TAN

TANH

SystemDateFormat
Returns the system date format string.
Parameter None
Return Value String describing the date format specified in the handheld device preferences.
Comments SystemDateFormat requires the Strings extension.
See Also DateToSysDate, FormatDate, FormatDateN, FormatTime, FormatTimeN,

GetSysDate, GetSysTime, SystemTimeFormat, SysTimeToTime,
TimeToSysTime

SystemTimeFormat
Returns the system time format string.
Parameter None
Return Value String describing the time format specified in the handheld device preferences.
Comments SystemTimeFormat requires the Strings extension.
See Also DateToSysDate, FormatDate, FormatDateN, FormatTime, FormatTimeN,

GetSysDate, GetSysTime, SystemDateFormat, SysTimeToTime,
TimeToSysTime

SysTimeToTime(NumSeconds)
Converts seconds since midnight to a user-readable time.
Parameter NumSeconds Number of seconds since midnight
Return Value User-readable time in format specified in the handheld device preferences.
Comments SysTimeToTime is a method of the App object.

This method performs a Mod operation (Mod of 1 day), so it can be used with
GetSysTime to find the current time.

See Also DateToSysDate, GetSysDate, GetSysTime, SysDateToDate, TimeToSysTime

TAN(x)
Calculates the tangent of the specified number.
Parameter x The number for which to calculate the tangent.
Return Value The tangent of the specified number.
Comments Requires the Math extension.
Example 'Example of TAN(x)

Dim z
z = TAN(x)

TANH(x)
Calculates the hyperbolic tangent of the specified number.
Parameter x The number for which to calculate the hyperbolic tangent.
Return Value The hyperbolic tangent of the specified number.

Satellite Forms 8
Development Guide

462

TermRecd

TimeToSysTime

Tone

Trim

Comments Requires the Math extension.
Example 'Example of TANH(x)

Dim z
z = TANH(x)

Extension.TermRecd()
Returns TRUE if the termination character is last character in the string. Use after GetScan to
verify that the termination character was received.
Parameters None
Return Value TRUE if the last scan succeeded; FALSE if it did not.
Comments Applies only to the Bar Code Reader and Symbol Integrated Scanner

extensions.
Example 'Example of TermRecd()

Dim x
x = BarCode1.TermRecd()

See Also GetScan

TimeToSysTime(Time)
Converts a user-readable time to seconds since midnight.
Parameter Time Time in format specified in the handheld device preferences.
Return Value Seconds since midnight.
Comments TimeToSysTime is a method of the App object.
See Also DateToSysDate, GetSysDate, GetSysTime, SysDateToDate, SysTimeToTime

Tone(Frequency, Duration, Amplitude)
Issues a tone of a specified frequency, duration, and amplitude.
Parameters Frequency

Duration
Amplitude

Frequency of the tone in Hertz.
Duration of tone in milliseconds.
Volume; range is 0–64. This parameter is optional. If it is omitted,
the sound plays at the default level.

Return Value None
Example 'Example of Tone

'InputA and InputB are edit controls.
Tone(InputA, InputB)

See Also Beep

Trim(string)
Trims leading and trailing spaces from input string.
Parameters String The string to trim leading and trailing spaces from.
Return Value The input string trimmed of leading and trailing spaces.
Comments Requires the Strings extension.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

463

UCase

Underline

Version

Visible

Example 'Example of Trim
Dim strTest
strTest = Trim(“ ABCD ”)
'Result: strTest contains “ABCD”

See Also LTrim, RTrim

UCase(string)
Converts string to all upper case.
Parameter string The string to convert to all upper case.
Return Value The input string converted to all upper case.
Comments Requires the Strings extension.
Example 'Example of UCase

Dim strTest
strTest = UCase(“string to convert”)
‘returns “STRING TO CONVERT”

See Also LCase

Controls(ControlName).Underline
Returns or sets the underline attribute of a control.
Parameter ControlName Name of a control.
Return Value None
Comments Underline is a property of the Control object. This property is only available

for Edit and Paragraph controls.

Version()
Returns the version number of this extension.
Parameters None
Return Value The version number of this extension.
Comments Requires the PxScreenTool extension.
Example 'Example of Version()

Dim x
x = Version()

Controls(ControlName).Visible
Indicates whether a control is visible. Assigning a value to the Visible property makes a
control visible or invisible.
Parameter ControlName The name of a control.
Return Value TRUE for visible controls; FALSE for invisible controls
Comments Visible is a property of the Control object. Use it to make a control visible

or invisible or to determine if a control is visible or invisible.
Multiple controls can occupy the same coordinates on the screen. Using the
Visible property, you can make different controls visible to the user at different
times.

Satellite Forms 8
Development Guide

464

While … Wend

X_Buffer

X_Initial

Example 'Example of Visible property
'InputA, InputB, and OutputA through
'OutputD are edit controls.
'Access the visible property of a control.
OutputA = InputA.Visible
OutputB = InputB.Visible
'Make a control visible.
OutputC.Visible = TRUE
'Make a control invisible.
OutputD.Visible = FALSE

See Also Show

While Condition
Statements
[Exit While]
Wend
Perform a while loop.
Parameters Condition

Statements
Condition to evaluate.
Commands to execute if Condition evaluates to TRUE.

Return Value None
Comments The Exit While clause is optional and is used to exit the loop prematurely.

The loop exits after the Wend statement. If there is no Exit While clause,
the loop continues to execute until Condition evaluates to FALSE.
Caution: If Condition never evaluates to FALSE, the loop runs infinitely.

Example 'Example of While loop
Dim x
x = 1
While x < 10

MsgBox("The value of x is " & x)
If x = 5 Then Exit While
x = x + 1

Wend
MsgBox ("Done.")

See Also For…To…Next

 X_Buffer(value)
Returns the current X[i] value from X[i] = (a*X[i-1] + c)mod 248.
Parameter value Must be 1, 2 or 3, designating the desired 16-bit order.
Return Value The current X[i] value from X[i] = (a*X[i-1] + c)mod 248.
Comments Requires the Random Number Generator extension.
Example 'Example of X_Buffer(value)

Dim x
x = X_Buffer(1)

 X_Initial(value)
Returns 16 bits of the initial 48-bit X[i] value.

Satellite Forms Scripting Language Reference
Satellite Forms scripting language reference

465

X_Last

Xor [bitwise]

Xor [logical]

Parameter value Must be 1, 2 or 3, designating the desired 16-bit order.
Return Value Sixteen bits of the initial 48-bit X[i] value.
Comments Requires the Random Number Generator extension.
Example 'Example of X_Initial(value)

Dim x
x = X_Initial(3)

 X_Last(value)
Returns the last X[i-1] value from X[i] = (a*X[i-1] + c)mod 248.
Parameter value Must be 1, 2 or 3, designating the desired 16-bit order.
Return Value The last X[i-1] value from X[i] = (a*X[i-1] + c)mod 248.
Comments Requires the Random Number Generator extension.
Example 'Example of X_Last(value)

Dim x
x = X_Last(1)

Number1 Xor Number2
Performs a bitwise Xor operation between the operands.
Parameters Number1

Number2
First operand.
Second operand.

Return Value The result of a bitwise Xor of the two operands.
Example 'Example of bitwise Xor

'InputA is an edit control.
'Toggle bit 4 (mask = 10 hex) in number.
OutputA = InputA Xor &H10

See Also And [bitwise]And [logical], Or [bitwise], Not [bitwise]

Condition1 Xor Condition2
Joins two conditions where one and only one condition must evaluate to TRUE for the
statement to evaluate to TRUE.
Parameters Condition1

Condition2
First condition to be evaluated.
Second condition to be evaluated.

Return Value TRUE if Condition1 evaluates to TRUE and Condition2 evaluates to FALSE;
TRUE if Condition1 evaluates to FALSE and Condition2 evaluates to TRUE;
FALSE otherwise.

Comments Each condition is evaluated individually, then the Xor operation is performed.
Note that Xor, And, Or, and Not only perform Boolean operations if both
conditions are Boolean. Otherwise, they perform bitwise operations on their
operands.

See Also And [bitwise]And [logical], Or [logical], Not [logical]

Satellite Forms 8
Development Guide

466

Satellite Forms API Reference
Satellite Forms API Overview

467

Chapter 12
Satellite Forms API Reference

This chapter provides instructions on how to use the Satellite Forms Application
Programming Interface (API) to write extensions and modify extensions written by
others. It includes a complete Satellite Forms API reference.

Satellite Forms API Overview
The Satellite Forms API enables you to extend the capabilities of Satellite Forms by
writing extensions, called SFX plug-ins and SFX Custom controls, or by modifying
extensions written by others. Satellite Forms extensions are programs written in C that
exchange data with the Satellite Forms Engine on handheld devices. You can use
extensions to manipulate data, perform complex business logic, create custom
controls, pop up dialog boxes, and handle many other functions. For example, with the
Satellite Forms API, you can do any of the following:

• Extend the Satellite Forms scripting language with libraries of new functions,
including financial, statistical, and so on.

• Create new user-interface objects: Satellite Forms SFX Custom controls.

• Build drivers for devices such as barcode scanners, portable printers, or pagers.

• Add business logic and complex validation to a form.

C programs that use the Satellite Forms API to interact with the Satellite Forms engine
are called Satellite Forms extensions. There are two kinds of extensions:

• SFX plug-ins

• SFX Custom controls

Satellite Forms SFX plug-ins are C-language functions called from a script in a
Satellite Forms application at run time, perform some kind of logic or data
manipulation, and optionally return data to the Satellite Forms application.

Satellite Forms SFX Custom controls are new custom controls that appear in the
MobileApp Designer at design time and can be incorporated into an application just
like one of the built-in Satellite Forms controls.

When writing your own extensions, be sure to check the version of the Satellite Forms
engine to ensure compatibility with your extension code. See SF_GetEngineVersion
on page 500 for a description of the applicable API function.

Satellite Forms 8
Development Guide

468

Satellite Forms comes with several sample extensions, including an SFX plug-in
called Square Root and an SFX Custom control called Slider. If you installed Satellite
Forms in the default installation directory, the source code for the Generic and Square
Root extensions and the Slider SFX Custom control extension is located in:
C:\Satellite Forms 8\Samples\Extensions\Generic\Src\
C:\Satellite Forms 8\Samples\Extensions\Square Root\Src\
C:\Satellite Forms 8\Samples\Extensions\Slider\Src\

If you installed Satellite Forms in the default installation directory, the executable
code for these and other extensions for Palm and Pocket PC is located in:
C:\Satellite Forms 8\Extensions\Standard\Palm\
C:\Satellite Forms 8\Extensions\Standard\PPC_ARM\

The next section presents examples of using the API to create both an SFX plug-in
and an SFX Custom control.

Creating an SFX plug-In
While the Satellite Forms scripting language currently supports basic mathematical
operations, some applications may require additional capabilities. Using the Satellite
Forms API, you can create extensions that provide any needed mathematical
functions. This example uses the Square Root extension, which returns the square root
of a number.

The following example illustrates how to create the Square Root SFX plug-in
extension supplied with Satellite Forms. You should be familiar with loading and
using extensions in Satellite Forms applications.

To create an SFX plug-in extension, you must complete the following steps, described
in detail below:

1 Create a development directory with all necessary files.

2 Write the C-language extension.

3 Create a descriptor file for the extension.

4 Copy the extension and descriptor file to a subdirectory of the Satellite Forms
Extensions directory.

5 Load the extension into a Satellite Forms application.

6 Download the extension and test application to the handheld device.

7 Test the extension by calling it from a Satellite Forms script.

Satellite Forms API Reference
Creating an SFX plug-In

469

Step 1: Create a development directory with all necessary files
The easiest way to begin writing an extension is to copy the contents of one of the
sample extension directories to your development directory for the new extension.
Create the development directory for the extension and, since this is an SFX plug-in
project, copy to it the contents of either the Generic or Square Root sample extension
directories. If you installed Satellite Forms in the default installation directory, the
source code for the Generic and Square Root extensions is located in:
C:\Satellite Forms 8\Samples\Extensions\Generic\Src\
C:\Satellite Forms 8\Samples\Extensions\Square Root\Src\

Step 2: Write and compile the C-language extension
You can write the C-language extension using Metrowerks’ CodeWarrior for
PalmOS, that allows you compile the code to a .PRC file for Palm OS, or Microsoft
Embedded Visual C++ to compile an .SFX file for Pocket PC OS. If you use
CodeWarrior, you can also use the Metrowerks debugger with your Satellite Forms
extensions.

Extensions are event handlers. You begin an extension by declaring a structure for the
necessary global variables. You then specify the events that you want your extension
to handle. Extensions can handle any of the events of the scripting language as well as
some additional events that are specific to extensions. The available event types are
defined in the SFDefs.h file and are listed and described in the following tables. If you
installed Satellite Forms in the default installation directory, the SFDefs.h file is
located in:
C:\Satellite Forms 8\Include\

The following table lists and describes the standard events available to extensions.

Note The SF_Handler_Form_AfterOpen and SF_Handler_Form_BeforeClose
events in the API differ from the corresponding events in the scripting language. In the
scripting language, these events fire one time per form, upon entering and exiting the
form. In the Satellite Forms API, these events fire one time per page, upon entering
and exiting the page.

Table 12.1 Standard events available to extensions

Event Description

SF_Handler_Form_AfterOpen Occurs after a form or a form’s page is opened.

SF_Handler_Form_Afterload Occurs after the controls on a form are loaded with data
from the form’s table.

SF_Handler_Form_AfterChange Occurs after data in any field of the form is changed.

SF_Handler_Form_AfterRecCreate Occurs after a new record is created in a form's linked
table.

SF_Handler_Form_BeforeClose Occurs before a form or page is closed (exited).

SF_Handler_Form_BeforeRecDelete Occurs before a record is deleted from a form (can
prevent delete).

SF_Handler_Form_OnValidate Occurs when a form is validated (can fail validation).

Satellite Forms 8
Development Guide

470

The following table lists and describes extension-specific events:

When you are finished writing the code, compile the extension for the desired
platform.

Step3: Create a descriptor file for the extension
The descriptor file includes information about the extension and describes its methods
and parameters. This information appears in MobileApp Designer and enables other
developers to use your extension properly in their Satellite Forms applications.
Descriptor files have the .INF extension. Refer to the examples in each of the
extension sample subdirectories for more information. If you installed Satellite Forms
in the default installation directory, the .INF files are located in:
C:\Satellite Forms 8\Samples\Extensions\<extension_name>\

Step 4: Copy the extension and descriptor file to a subdirectory of the
Satellite Forms Extensions directory
After you write and compile the Satellite Forms extension and create its descriptor
file, copy the extension files to the following subdirectories of your Satellite Forms
installation:

• .PRC file: C:\Satellite Forms 8\Extensions\<creator name>\Palm\

• .SFX file: C:\Satellite Forms 8\Extensions\<creator name>\
PPC_ARM\

• .INF and .BMP files: C:\Satellite Forms 8\
Extensions\<creator name>\

Under the Extensions directory, create a directory with the name of the creator of the
extension (the company or developer name). In this directory, place the .INF and
.BMP files – for SFX Custom controls – associated with your extension. By
convention, preface the names of these files with SFE_ for Satellite Forms Extension.

When you start Satellite Forms MobileApp Designer, it searches all the subdirectories
of the Extensions directory for extensions to load into MobileApp Designer. If your

Table 12.2 Extension-specific events

Event Description

SF_Handler_OnExtLoad Occurs when the application is opened and the extension is
loaded.

SF_Handler_OnExtUnload Occurs when the application is exited and the extension is
unloaded. Use the OnExtUnload event to free any
allocated globals.

SF_Handler_OnFormEvent Occurs when an OS event reaches a form. You can handle
the event in your extension or allow the OS to handle it.

SF_Handler_OnSysEvent Occurs with every OS event before the OS receives event
notification. You can handle the event in your extension or
allow the OS to handle it.

SF_Handler_OnSFXNotify Occurs when a user accesses one of the methods of an
SFX control or the OS notifies an SFX control of certain
actions.

Satellite Forms API Reference
Creating an SFX Custom control

471

extension is not in any of these subdirectories, you cannot access it from with
MobileApp Designer.

Step 5: Load the extension into a Satellite Forms application
Follow the instructions under MobileApp Designer View menu on page 85 for adding
a plug-in to a Satellite Forms application.

Step 6: Download the extension to the handheld device
Follow the instructions under MobileApp Designer Handheld menu on page 88 for
downloading an extension to the handheld device.

Step 7: Test the extension by calling it from a Satellite Forms script
Follow the instructions under Creating a Satellite Forms script on page 309 for calling
methods of a plug-in a Satellite Forms script.

Creating an SFX Custom control
While Satellite Forms provides a variety of standard user interface controls, some
applications may require additional capabilities. Using the Satellite Forms API, you
can create custom SFX Custom controls to meet virtually any user interface
requirement. The following example illustrates how to create the Slider SFX Custom
control supplied with Satellite Forms. Before working with this example, you should
be familiar with the following concepts:

• Adding SFX Custom controls to a project and using them in Satellite Forms
applications.

• Creating an SFX plug-in for Satellite Forms. For information, see the previous
section, Creating an SFX plug-In on page 468.

Creating an SFX Custom control is similar to creating an SFX plug-in, with the
addition of a few additional steps. Begin by reviewing the sample code from either the
Generic or Square Root extensions. Beyond the code required to implement an SFX
plug-in, SFX Custom controls have several additional requirements:

• Multiple instances of an SFX control can exist.

• SFX controls must handle system notification events in the OnSfxNotify event
handler.

• SFX controls must read configuration information the user passes in.

• The .INF files for SFX controls contain additional information.

Review the Slider example source file, Main.c, for a complete example of how these
requirements need to be implemented. If you installed Satellite Forms in the default
installation directory, the source code for the Slider SFX Custom control extension is
located in:
C:\Satellite Forms 8\Extensions\Slider\Src\

Satellite Forms 8
Development Guide

472

API function reference by category
The following sections document the Satellite Forms API by function category. For
details on each function, including its usage, parameters, and return value, see the
Alphabetical API Reference on page 481.

Caution API functions in italics are obsolete and kept for backward compatibility with
only. These API functions may be removed from future versions of Satellite Forms
without notice. Do not use these functions for new applications and replace them with
the current functions in existing applications.

Memory allocation functions
The following table lists and describes memory allocation functions:

Table Operation functions
The following table lists and describes table operations functions:

Table 12.3 Memory allocation functions

Function Description

SF_AllocDbItem Allocates a block of memory from the database heap
and initializes it with the data passed in.

SF_db_free Frees a memory block allocated with SF_db_malloc.

SF_db_malloc Allocates a memory block from the database heap.

SF_db_realloc Changes the size of a memory block allocated with
SF_db_malloc.

SF_FreeCachedRecordData Discards any memory associated with a cached record.

SF_xfree Frees a memory block allocated with SF_xmalloc.

SF_xmalloc Allocates a memory block from the dynamic heap.

SF_xrealloc Changes the size of a memory block allocated with
SF_xmalloc.

Table 12.4 Table operation functions

Function Description

SF_AppDesIndexToTable Retrieves a pointer to the TABLE_REC from MobileApp
Designer’s index of a Table object.s

SF_CommitCachedRecord Saves data in the specified cached record to the
record’s database.

SF_CommitItemToRow (Obsolete. Do
not use.)

Stores data in a table. Obsolete. Do not use.

SF_CompareFields Compares two Satellite Forms table fields and indicates
whether they are equal or which is greater.

SF_CreateNewRecord Creates a record in a table.

Satellite Forms API Reference
API function reference by category

473

SF_CurrentRowInvalid Determines if the current record is invalid.

SF_DeleteRecord Deletes a record from a table.

SF_DoTableLookup Looks up the specified data in a table’s key column and
returns data in the corresponding return column.

SF_FindFirstRow Returns the row number of the first record in a table.

SF_FindLastRow Returns the row number of the last record in a table.

SF_FindNextRow Returns the row number of the next record in a table.

SF_FindPrevRow Returns the row number of the previous record in a
table.

SF_GetActiveRecord Retrieves the active record – the record the current form
is displaying.

SF_GetCachedField Retrieves a field’s contents from a cached record.

SF_GetFieldCopy Retrieves a copy of the contents of the specified field.

SF_GetFirstField (Obsolete. Do not
use)

Internal function. Obsolete. Do not use.

SF_GetNumRows Returns the number of records in a table.

SF_GetRowItemCopy (Obsolete. Do
not use.)

Creates a copy of data. Obsolete. Do not use.

SF_GetTableColNumDecimals Returns the number of decimal places in a numeric
column.

SF_GetTableColType Returns a column’s type.

SF_GetTableColWidth Returns the width of a column.

SF_LockRowItem (Obsolete. Do not
use)

Internal function. Obsolete. Do not use.

SF_ResizeLockedRecord (Obsolete.
Do not use.)

Internal function. Obsolete. Do not use.

SF_RowMeetsCriteria Determines if a record meets the criteria of all active
filters.

SF_SearchTable Finds data in a table.

SF_SetCachedField Replaces the contents of a field in a cached record.

SF_UnlockRowItem (Obsolete. Do
not use)

Internal function. Obsolete. Do not use.

Table 12.4 Table operation functions (Continued)

Satellite Forms 8
Development Guide

474

Form operation functions
The following table lists and describes form operations functions:

Table 12.5 Form operation functions

Function Description

SF_AppDesIndexToForm Retrieves a pointer to a Satellite Forms Form object
structure from MobileApp Designer’s index of a Form
object.

SF_CommitFormToCurrentRow Saves the data from all controls on the current page to
the form’s linked table.

SF_FormCreateRow Creates and displays a record on a form.

SF_FormDeleteCurrRow Deletes the current record from the form’s linked table.

SF_FormDrawAll Redraws the form.

SF_FormSlotAlloc Allocates a slot for a new control in the Palm OS form
structure.

SF_FormTableSizeChangedNotify Notifies all controls on the current form that the size of
the linked table has changed, enabling the controls to
take appropriate action.

SF_FormValidate Determines if all required fields on the current page
contain data and all boundary conditions are satisfied.

SF_GetCurrentForm Returns the current form.

SF_GetFirstForm Returns the first form of the application.

SF_GetFormCurrentRow Returns the row number of the current record displayed
on a form.

SF_GetFormCurrPage Returns the page number of the current page of the
current form.

SF_GetFormFirstControl Returns a pointer to the first control on a form.

SF_GetFormFlags Returns the attribute flags for a form.

SF_GetFormNextForm Returns a pointer to the next form in an application
relative to the specified form.

SF_GetFormNumPages Returns the number of pages in a form.

SF_GetFormOsFormPtr Returns the Palm OS form that corresponds to a
Satellite Forms form.

SF_GetFormReturnIndex Returns the index of the form that called a specified
form.

SF_GetFormTableIndex Returns the index of a form’s linked table.

SF_LoadFormWithCurrentRow Loads the controls on the current page with data from
the current record of the form’s linked table.

Satellite Forms API Reference
API function reference by category

475

Control operation functions
The following table lists and describes control operations functions:

Table 12.6 Control operation functions

Function Description

SF_AppDesIndexToControlRec Retrieves a pointer to Satellite Forms control from
MobileApp Designer’s index of a Control object.

SF_ClearInkRecord Erases the contents of an ink control.

SF_ExecAutoStamp Executes the intrinsic stamp action of an auto stamp
control.

SF_GetControlBottom Returns the bottom coordinate of a control.

SF_GetControlDataCopy Copies the data in a control.

SF_GetControlFlags Returns the attribute flags of a control.

SF_GetControlLeft Returns the left coordinate of a control.

SF_GetControlNextControl Returns the next control in a form relative to the
specified control.

SF_GetControlOsIndex Returns the Palm OS index of the specified Satellite
Forms control.

SF_GetControlPageNum Returns the page number where a control is located.

SF_GetControlRight Returns the right coordinate of a control.

SF_GetControlTop Returns the top coordinate of a control.

SF_GetControlType Returns the type of a control.

SF_LoadCtrlObjFromCachedRecord Loads a Check Box or Radio Button control with data
from a cached record.

SF_LoadDropListFromCachedRecord Loads a Drop List control with data from a cached
record.

SF_LoadFieldFromCachedRecord Loads an Edit control with data from a cached record.

SF_LoadInkFieldFromCachedRecord Loads an Ink control with data from a cached record.

SF_LoadFormWithCurrentRow Loads an Ink control with data from a record. Obsolete.
Do not use.

SF_LockRecordAndCache Locks the specified record and caches it in dynamic
memory.

SF_QueryField Provides a fast way to obtain a read-only pointer to a
table.

SF_RenderInk Redraws the contents of an Ink control.

SF_SaveCtrlObjToCachedRecord Saves the contents of a Check Box or Radio Button
control to a cached record.

SF_SaveDropListToCachedRecord Saves the contents of a Drop List control to a cached
record.

SF_SaveFieldToCachedRecord Saves the contents of an Edit control to a cached record.

Satellite Forms 8
Development Guide

476

Control action functions
The following table lists and describes control action functions:

UI object conversion functions
The following table lists and describes UI object conversion functions:

SF_SaveInkFieldToCachedRecord Saves the contents of an Ink control to a cached record.

SF_SetCtrlObjText Sets the caption of a Check Box or Radio Button control.

SF_SetDropListText Sets the caption of a Drop List control.

SF_SetFieldText Sets the caption of an Edit control.

SF_SetLookupText Sets the caption of a Lookup control.

SF_UnqueryField Unlocks and releases a field that was accessed with
SF_QueryField.

SF_ValidateField Validates the contents of an Edit control to ensure the
correct type.

Table 12.6 Control operation functions (Continued)

Table 12.7 Control action functions

Function Description

SF_AdvanceByPage Moves among a form’s pages and records.

SF_GetControlAction Internal function. Not normally used.

SF_GotoNewForm Jumps to a new form.

SF_GotoRow Makes a record the current record.

SF_PerformControlAction Executes the action associated with a control.

Table 12.8 Object conversion functions

Function Description

SF_ControlRecToOsObj Converts a pointer to a Satellite Forms control to a
pointer to the corresponding Palm OS control.

SF_GetFocusObjectPtr Returns the Palm OS field object that has focus.

SF_GetUIObjectParent Returns a pointer to the Satellite Forms control
associated with a specified Palm OS control.

SF_IdToControlRec Converts a Palm OS control ID to a pointer to a Satellite
Forms control.

SF_IdToObjectPtr Converts a Palm OS control ID to a pointer to a Palm OS
control.

SF_OsIndexToControlRec Converts an index in the Palm OS form’s control array to
a pointer to the corresponding Satellite Forms control.

Satellite Forms API Reference
API function reference by category

477

Format translation functions
The following table lists and describes format translation functions:

SFX extension initialization functions
The following table lists and describes SFX extension initialization functions:

SF_PointInControl Determines if a point, identified by an (x,y) coordinate,
lies within a control’s rectangle.

SF_PointToControlRec Converts a point, identified by an (x,y) coordinate, into a
pointer to a control that is located at that position.

Table 12.8 Object conversion functions (Continued)

Table 12.9 Format translation functions

Function Description

SF_ConvertDisplayToInternalFormat Converts data in a format suitable for display to the user
into the Satellite Forms internal table data format.

SF_ConvertInternalToDisplayFormat Converts the Satellite Forms internal table data format
into a format suitable for display to the user.

SF_FormatNumber Formats a number.

SF_InternalToPilotDate Converts the Satellite Forms internal representation of a
date to the Palm OS representation.

SF_InternalToPilotTime Converts the Satellite Forms internal representation of a
time to the Palm OS representation.

SF_PilotDateToInternal Converts the Palm OS representation of a date to the
Satellite Forms internal representation.

SF_PilotTimeToInternal Converts the Palm OS representation of a time to the
Satellite Forms internal representation.

Table 12.10 Extension initialization functions

Function Description

SF_GetConfigVar Returns the value of the specified key from the
configuration section of the current instance of an SFX
Custom control.

SF_GetExtensionControl Returns a pointer to the Satellite Forms control
associated with an SFX Custom control.

SF_GetGlobalPtr Returns a pointer to the global data area used by an
SFX Custom control.

SF_GetInstanceDataPtr Returns a pointer to the instance data area used by an
SFX Custom control.

SF_InstallHandler Installs a handler for an event.

SF_SetGlobalPtr Saves a pointer to the global data area an SFX Custom
control uses.

Satellite Forms 8
Development Guide

478

Floating-point operation functions
The following table lists and describes floating-point operations functions:

Scripting functions
The following table lists and describes scripting functions:

SF_SetInstanceDataPtr Saves a pointer to the instance data area used by an
SFX Custom control.

Table 12.10 Extension initialization functions (Continued)

Table 12.11 Floating-point operation functions

SF_FloatAdd Performs floating-point addition.

SF_FloatEq Evaluates whether two floating-point numbers are equal.

SF_FloatDiv Performs floating-point division.

SF_FloatGe Evaluates whether one floating-point number is greater
than or equal to another.

SF_FloatGt Evaluates whether one floating-point number is greater
than another.

SF_FloatLe Evaluates whether one floating-point number is less
than or equal to another.

SF_FloatLt Evaluates whether one floating-point number is less
than another.

SF_FloatNe Evaluates whether two floating-point numbers are not
equal.

SF_FloatMul Performs floating-point multiplication.

SF_FloatSub Performs floating-point subtraction.

Table 12.12 Scripting functions

Function Description

SF_Beep Issues a beep from the handheld device speaker.

SF_ColumnSum Sums data values in a specified column.

SF_GetSysTime Returns the number of seconds since January 1, 1904.

SF_InternalDateToSysDate Converts the Satellite Forms representation of a date to
the scripting language representation.

SF_InternalTimeToSysTime Converts the Satellite Forms representation of a time to
the scripting language representation.

SF_ScriptExecExt Executes an extension’s method or accesses a property.

SF_ScriptFloatToString Converts a floating-point value into a string.

SF_ScriptFreeParamMem Internal function. Not normally used.

Satellite Forms API Reference
API function reference by category

479

Message and error functions
The following table lists and describes message and error functions:

SF_ScriptGetTosPtr Returns a pointer to the item on the top of the stack.

SF_ScriptPopFloat Removes an item from the top of the stack and returns it
as a floating-point number.

SF_ScriptPopInt64 Removes an item from the top of the stack and returns it
as a 64-bit integer.

SF_ScriptPopInteger Removes an item from the top of the stack and returns it
as an integer.

SF_ScriptPopString Removes an item from the top of the stack and returns it
as a string.

SF_ScriptPushFloat Pushes a floating-point value onto the stack.

SF_ScriptPushFloatFromStr Pushes a floating-point value onto the stack from a
string value.

SF_ScriptPushInt64 Pushes a 64-bit integer onto the stack.

SF_ScriptPushInteger Pushes an integer onto the stack.

SF_ScriptPushStaticStr Pushes a string that was not allocated with
SF_xmalloc onto the stack.

SF_ScriptPushVar Pushes a variable onto the stack.

SF_ScriptPushVarString Pushes a string allocated with SF_xmalloc onto the
stack.

SF_TaskDelay Puts the handheld device in energy-conserving doze
mode for the specified duration.

SF_Tone Issues a tone of a specified frequency, duration, and
amplitude.

SF_ScriptVarAssign Assigns the value on the top of the stack to a variable.

SF_SysDateToInternalDate Converts the scripting language representation of a date
to the Satellite Forms internal representation.

SF_SysTimeToInternalTime Converts the scripting language representation of a time
to the Satellite Forms internal representation.

Table 12.12 Scripting functions (Continued)

Table 12.13 Message and error functions

Function Description

SF_AssertFail Displays a dialog box indicating an assertion failure at a
specified file and line number.

SF_Beep Issues an error beep from the handheld device speaker.

SF_ConfirmMsg Displays a dialog box containing OK and Cancel
buttons.

SF_InfoMsg Displays a dialog box containing a message and an OK
button.

Satellite Forms 8
Development Guide

480

Miscellaneous functions
The following table lists and describes miscellaneous functions:

SF_InfoMsgInt Displays a dialog box containing a message followed by
an integer.

SF_ShowAbout Displays the Satellite Forms About box.

Table 12.13 Message and error functions (Continued)

Table 12.14 Miscellaneous functions

Function Description

SF_atoi Converts a string to an integer.

SF_CloneString Creates a copy of a string.

SF_DeleteApplication Deletes an application and all of its tables from the
handheld device.

SF_DeleteDatabaseByName Deletes a file from the handheld device.

SF_DoButtonBehavior Causes a rectangle to behave like a Palm OS button.

SF_GetEngineVersion Retrieves the full version number of the Satellite Forms
engine.

SF_itoa Converts a string to an integer.

SF_itoh Converts an integer to a hexadecimal ASCII string.

SF_memcpy ???

SF_memset Fills a range of dynamic memory range with the
specified value.

SF_memsize Returns the size of the specified pointer.

SF_strcat Concatenates a string to another.

SF_strchr Searches a string for the specified character.

SF_strcmp Case-sensitive comparison of two strings.

SF_strcpy Copies one string to another.

SF_stricmp Case-insensitive comparison of two strings.

SF_strlen Returns the length of the specified string.

SF_strstr Searches for a sub-string within a string.

Satellite Forms API Reference
Alphabetical API Reference

481

Alphabetical API Reference
The following sections provide an alphabetical listing of the Satellite Forms API
functions including usage, parameters, return values of each function.

For information on which API functions to use for specific tasks, see the previous
section, API function reference by category on page 472.

SF_AdvanceByPage

SF_AllocDbItem

CBOOL SF_AdvanceByPage (WORD MoveType)
Moves among a form’s pages and the records of its linked table.
Parameter MoveType The kind of move to make.
Return Value TRUE if the move is successful; FALSE if it is not.
Comments The MoveType parameter takes the following values:

ACTIONTYPE_FIRST
ACTIONTYPE_LAST
ACTIONTYPE_NEXT

ACTIONTYPE_PREV

Moves to the first page and the first record.
Moves to the last page and the last record.
Moves to the next page. On the last page, moves to
the next record.
Moves to the previous page. On the first page, moves
to the previous record.

Using this function with ACTIONTYPE_NEXT fails if the current page is the last
page and the current record is the last record. Similarly, using this function with
ACTIONTYPE_PREV fails if the current page is the first page and the current
record is the first record.

DB_ITEM * SF_AllocDbItem (void *pData, WORD DataLen)
Allocates a block of memory from the database heap and initializes it with the data passed in.
Parameters pData

DataLen

Pointer to the data to be copied into the newly allocated block
of memory.
Size of data pData points to.

Return Value A pointer to the newly allocated and initialized block of memory or NULL if
the function fails

Comments A DB_ITEM is a Satellite Forms-specific database item that represents a
single field value. A record in a Satellite Forms database is composed of
several DB_ITEM structures placed sequentially within the record. Functions
that manipulate the contents of record fields typically use DB_ITEM to
represent the field data. Note: The exact format of DB_ITEM is not important.
Treat DB_ITEM as an opaque data structure similar to Handles in the Win32
API. Satellite Forms API functions generate and consume these structures.
Simply pass the DB_ITEM structures between API functions.

Satellite Forms 8
Development Guide

482

SF_AppDesIndexToControlRec

SF_AppDesIndexToForm

CONTROL_REC * SF_AppDesIndexToControlRec (Word Index)
Retrieves a pointer to a Satellite Forms control from MobileApp Designer’s index of a Control
object.
Parameter Index Zero-based index of the desired control.
Return Value Pointer to a Satellite Forms control from MobileApp Designer’s index of the

Control object.
Comments The prototype for this function is in the Include file SFExt.h.

This function converts a MobileApp Designer index to a pointer to a control.
Indexes are typically passed to an extension through a configuration variable.
A control index, when passed through a configuration variable, looks like this:
%Cnnn. The nnn is the MobileApp Designer index. You can convert the index
to an integer by passing a pointer to the nnn part to SF_atoi.
For more information, see the Slider SFX Custom control example in the
following directory:
C:\Satellite Forms 8\Samples\Extensions\Slider\Src\

See Also SF_AppDesIndexToForm, SF_APPDESINDEXTOTABLE

FORM_HEADER * SF_AppDesIndexToForm (Word Index)
Retrieves a pointer to a Satellite Forms Form object from MobileApp Designer’s index of a
Form object.
Parameter Index Zero-based index of the desired form.
Return Value Pointer to a Satellite Forms Form object from MobileApp Designer’s index of a

Form object
Comments The prototype for this function is in the Include file SFExt.h.

This function converts an MobileApp Designer index to a pointer to a form.
Indexes are typically passed to an extension through a configuration variable.
A control index, when passed through a configuration variable, looks like this:
%Fnnn. The nnn is the App Designer index. You can convert it to an integer by
passing a pointer to the nnn part to SF_atoi.
For more information, see the Slider SFX Custom control example in the
following directory:
C:\Satellite Forms 8\Samples\Extensions\Slider\Src\

See Also SF_APPDESINDEXTOCONTROLREC, SF_APPDESINDEXTOTABLE

Satellite Forms API Reference
Alphabetical API Reference

483

SF_AppDesIndexToTable

SF_AssertFail

SF_atoi

SF_Beep

TABLE_REC * SF_AppDesIndexToTable (Word Index)
Retrieves a pointer to TABLE_REC from MobileApp Designer’s index of a Table object.
Parameter Index Zero-based index of the desired table.
Return Value Pointer to TABLE_REC from MobileApp Designer’s index of a Table object.
Comments The prototype for this function is in the Include file SFEXT.H.

This function converts a MobileApp Designer index to a pointer to a table.
Indexes are typically passed to an extension through a configuration variable.
A control index is passed through a configuration variable that looks like this:
%Tnnn. The nnn is the App Designer index. You can convert it to an integer by
passing a pointer to the nnn part to SF_atoi.
For more information, see the Slider SFX Custom control example in the
following directory:
C:\Satellite Forms 8\Samples\Extensions\Slider\Src\
The file Main.c has an example of using the SF_AppDesIndexToTable
function. A field is passed to this control as a configuration variable.

See Also SF_APPDESINDEXTOCONTROLREC, SF_AppDesIndexToForm

Void SF_AssertFail (char *pFile, int LineNum)
Displays a dialog box indicating an assertion failure at a specified file and line number.
Parameters pFile

LineNum

Pointer to a string containing the name of a file that is displayed
in the dialog box.
Line number displayed in the dialog box.

Return Value None
Comments With Metrowerks’ CodeWarrior, you can use the pre-defined compiler symbols

__FILE__ for the filename and __LINE__ for the line number.

long SF_atoi (const char *pszStr)
Converts a string to an integer.
Parameter pszStr Pointer to a string to convert.
Return Value The converted integer.

void SF_Beep (Word BeepType)
Issues a beep from the handheld device speaker.
Parameter BeepType Type of beep.
Return Value None
Comments The BeepType parameter takes the following values:

1 = Information
2 = Warning
3 = Error
4 = Startup
5 = Alarm
6 = Confirmation
7 = Click

See Also SF_Tone

Satellite Forms 8
Development Guide

484

SF_ClearInkRecord

SF_CloneString

SF_ColumnSum

SF_CommitCachedRecord

SF_CommitFormToCurrentRow

SF_CommitItemToRow(Obsolete. Do not use.)

void SF_ClearInkRecord (CONTROL_REC *pControl)
Erases the contents of an Ink control.
Parameter pControl Pointer to the desired Ink control.
Return Value None

char * SF_CloneString (char *pStr)
Creates a copy of a string.
Parameter pStr Pointer to the string to be copied.
Return Value Pointer to a string containing the copy of the input string.
Comments This function allocates memory for the cloned string with SF_xmalloc. Free

the allocated memory with SF_xfree when done with the string.

DWORD SF_ColumnSum (WORD TableIndex, WORD ColumnIndex)
This function sums data values in a table’s column.
Parameters TableIndex

ColumnIndex
Index of the desired table.
Index of the desired column in the specified table.

Return Value Sum of the data in the specified column.
Comments Only columns that match the criteria of all active filters are summed.

CBOOL SF_CommitCachedRecord (CACHED_RECORD *pCachedRec)
Save the data in the specified cached record into the record’s database.
Parameter pCachedRec Pointer to the desired cached record.
Return Value TRUE if successful; FALSE if the function fails.
Comments Typically, the record being displayed in and operated on by the current form is

cached in memory. Internal functions use SF_CommitCachedRecord to
save the contents of the cached record back to its original database.

CBOOL SF_CommitFormToCurrentRow ()
Saves the data from all controls on the current page to the form’s underlying table.
Parameters None
Return Value TRUE if the data passes validation and is saved to the underlying table;

FALSE if the function fails.

void SF_CommitItemToRow (TABLE_REC *pRec, WORD RowNum, WORD ColIndex,
BYTE *pItem)
Stores data in a table.

Satellite Forms API Reference
Alphabetical API Reference

485

SF_CompareFields

SF_ConfirmMsg

SF_ControlRecToOsObj

SF_ConvertDisplayToInternalFormat

Parameters pRec
RowNum

ColIndex
pItem

Pointer to the desired table.
Zero-based row number of the record in which data is to be
stored.
Index of the column in which the data is to be stored.
Pointer to the data to be stored.

Return Value None
Comments The data item must be a null-terminated string. It does not have to be as large

as the column width. If the data item is numeric, it must have the correct
number of decimal places. For example, if there are two decimal places, you
must express 1 as 1.00.

See Also SF_GetRowItemCopy (Obsolete. Do not use.)

short SF_CompareFields (DB_ITEM *pField1, DB_ITEM *pField2, TABLE_REC *pRec,
WORD ColIndex)
Compares two Satellite Forms database fields and indicates whether they are equal or which
is greater.
Parameters pField1

pField2
pRec
ColIndex

Pointer to the first field.
Pointer to the second field.
Pointer to the table containing the first field.
Index of the first field’s column.

Return Value This function returns zero if the two fields are equal, 1 if the first field is greater
than the second, and –1 otherwise.

Comments The two fields must be of the same data type.

CBOOL SF_ConfirmMsg (char *p)
Displays a dialog box containing a message and OK and Cancel buttons.
Parameter p Pointer to a string containing the message.
Return Value TRUE if the user taps OK; FALSE if the user taps Cancel.
See Also SF_InfoMsg, SF_InfoMsgInt

void * SF_ControlRecToOsObj (CONTROL_REC *pControl, FormObjectKind ObjType)
Converts a pointer to a Satellite Forms control to a pointer to the corresponding Palm OS
control.
Parameters pControl

ObjType
Pointer to the desired a Satellite Forms control.
Palm OS object type.

Return Value Pointer to the corresponding Palm OS control.
Comments The ObjType parameter is used to validate the object type of the control. You

can pass in –1 if you do not want to validate the object type.

BYTE * SF_ConvertDisplayToInternalFormat (const char *pszItem, const TABLE_REC
*pRec, WORD wColIndex, WORD *pwFldDataSize)
Converts data in a format suitable for display to the user to the Satellite Forms internal table
data format.

Satellite Forms 8
Development Guide

486

SF_ConvertInternalToDisplayFormat

SF_CreateNewRecord

SF_CurrentRowInvalid

Parameters pszItem
pRec
wColIndex
pwFldDataSize

String to be converted into internal format.
Pointer to the table to which the data is saved.
Column index that represents the data format.
Buffer that holds the size of the data returned by this
function.

Return Value Null or the converted data allocated in the heap. The caller must free the
allocated memory using SF_xfree.

See Also SF_ConvertInternalToDisplayFormat

BYTE * SF_ConvertInternalToDisplayFormat (const DB_ITEM *pItem, WORD *pwSize,
const TABLE_REC *pRec, WORD wColIndex)
Converts the Satellite Forms internal table data format into a format suitable for display to the
user.
Parameters pItem

pwSize
pRec
wColIndex

DB_ITEM returned by API function such as GetCachedField.
Buffer to hold the size of the returned string.
Pointer to the table from which the data was retrieved.
Column index that represents the data format.

Return Value Null or a string allocated in the heap. The caller must free the string using
SF_xfree.

See Also SF_GetRowItemCopy (Obsolete. Do not use.),
SF_ConvertDisplayToInternalFormat

WORD SF_CreateNewRecord (TABLE_REC *pRec, CBOOL fPromptUser)
Creates a record in the specified table.
Parameters pRec

fPromptUser
Pointer to the desired table.
Boolean value specifying whether to prompt the user to confirm
the record creation: TRUE prompts; FALSE does not prompt.

Return Value Zero-based row number of the new record if successful; 0xFFFF if the function
failed to create the new record.

Comments If fPromptUser is TRUE, this function prompts the user to confirm creation of
the new record. If the user does not allow the record to be created, the function
fails.
If fPromptUser is FALSE, a record is created without prompting the user.
New records are added to the end of the table. It is not possible to insert a new
record into any other position in a table.

See Also SF_DeleteRecord, SF_FormCreateRow, SF_FormDeleteCurrRow

CBOOL SF_CurrentRowInvalid ()
Determines if the current record – the record being displayed by the current form – is invalid.
Parameters None
Return Value TRUE if there is no table linked to the current form, if the table linked to the

current form has no records, or if active filters exclude all records; FALSE if the
row is valid.

Comments In general, you should use this function before manipulating data in the current
record.

Satellite Forms API Reference
Alphabetical API Reference

487

SF_db_free

SF_db_malloc

SF_db_realloc

void SF_db_free (void *pMem)
Frees a block of memory allocated with SF_db_malloc.
Parameter pMem Pointer to block of memory allocated with SF_db_malloc.
Return Value None
Comments SF_db_malloc, SF_db_realloc, and SF_db_free manipulate memory

on the database heap. Use these functions whenever you need to allocate
large amounts of memory.
Memory allocated using these functions is read-only when accessed through a
pointer. To write to this memory, you must use the Palm OS database memory-
write functions, for example, DmSet, DmWrite.

See Also SF_db_malloc, SF_db_realloc, SF_xfree, SF_xmalloc, SF_xrealloc

void * SF_db_malloc (WORD Size)
Allocates a block of memory from the database heap.
Parameter Size Requested size of the memory block.
Return Value Pointer to the allocated memory block if successful; NULL if the function failed

to allocate the requested memory.
Comments SF_db_malloc, SF_db_realloc, and SF_db_free manipulate memory

from the database heap. Use these functions whenever you need to allocate
large amounts of memory.
Memory allocated using these functions is read-only when accessed through a
pointer. To write to this memory, you must use the Palm OS database memory-
write functions, for example, DmSet, DmWrite.

See Also SF_db_free, SF_db_realloc, SF_xfree, SF_xmalloc, SF_xrealloc

void * SF_db_realloc (void *pMem, WORD NewSize)
Changes the size of a memory block allocated with SF_DB_MALLOC.
Parameter pMem

NewSize
Pointer to a block of memory allocated with SF_db_malloc
New requested size of the specified memory block.

Return Value Pointer to the reallocated memory block if successful; NULL if the function fails
to reallocate the specified block of memory.

Comments The block of memory may move as a result of the reallocation.
F_db_malloc, SF_db_realloc, and SF_db_free manipulate memory
from the database heap. Use these functions whenever you need to allocate
large amounts of memory.
Memory allocated using these functions is read-only when accessed through a
pointer. To write to this memory, you must use the Palm OS database memory-
write functions, for example, DmSet, DmWrite.

See Also SF_db_malloc, SF_db_free, SF_xfree, SF_xmalloc, SF_xrealloc

Satellite Forms 8
Development Guide

488

SF_DeleteApplication

SF_DeleteDatabaseByName

SF_DeleteRecord

SF_DoButtonBehavior

void SF_DeleteApplication (char *pAppName)
Deletes an application and all of its tables from the handheld device.
Parameter pAppName The name of the file containing the application to be deleted.
Return Value None
Comments Satellite Forms application filenames are in the form SF_*, for example,

SF_MyApp.
See Also SF_DeleteDatabaseByNamec

CBOOL SF_DeleteDatabaseByName (char *pName)
Deletes a database file from the handheld device.
Parameter pName The name of the database file to be deleted.
Return Value TRUE if the database file is successfully deleted; FALSE if the function fails to

delete the database file.
Comments Caution: This function can delete any file on the handheld device, not just

Satellite Forms database files.
See Also SF_DeleteApplication

CBOOL SF_DeleteRecord (TABLE_REC *pRec, WORD RowNum, CBOOL fPromptUser)
Deletes a record from the specified table.
Parameters pRec

RowNum
fPromptUser

Pointer to the desired table.
Zero-based row number of record to be deleted.
Boolean value specifying whether to prompt the user to confirm
the record deletion: TRUE prompts; FALSE does not prompt.

Return Value TRUE if the record is successfully deleted; FALSE if the function fails to delete
the record.

Comments If fPromptUser is TRUE, this function prompts the user to confirm deletion of
the record. If the user does not allow the record to be deleted, the function
fails.
If fPromptUser is FALSE, the record is deleted without prompting the user.
If you delete the current row, you must reset the current row using, for
example, SF_GotoRow with the fSaveCurrent parameter set to FALSE.

See Also SF_CreateNewRecord, SF_FormDeleteCurrRow, SF_GotoRow

CBOOL SF_DoButtonBehavior (RectangleType *pRect)
Causes a rectangle to behave like a Palm OS button.
Parameter pRect Pointer to the desired rectangle.
Return Value TRUE if the user lifts the stylus inside the rectangle; FALSE otherwise.
Comments When you receive a PenDownEvent within the bounds of the specified

rectangle, call this function. It tracks the stylus until the user lifts the stylus. As
the stylus enters the rectangle, the rectangle inverts. As the stylus leaves the
rectangle, the rectangle will revert to normal. If the user lifts the stylus within
the bounds of the rectangle, this function returns TRUE.

Satellite Forms API Reference
Alphabetical API Reference

489

SF_DoTableLookup

SF_ExecAutoStamp

SF_FindFirstRow

SF_FindLastRow

DB_ITEM * SF_DoTableLookup (DB_ITEM *pKeyItem, WORD TableIndex, WORD
KeyColIndex, WORD RetColIndex)
Looks up the specified data in a table’s key column and returns data in the corresponding
return column.
Parameters pKeyItem

TableIndex
KeyColIndex
RetColIndex

Pointer to data to be looked up – a zero-terminated string.
Index of the desired table.
Index of the column in which data will be looked up.
Index of the column from which data is to be returned.

Return Value Pointer to a copy of the data stored in the column RetColIndex for the first row
where the data referenced by pKeyItem is found in the column KeyColIndex if
successful; NULL otherwise.

Comments This function allocates the copy of the data using SF_xmalloc. The caller
must free this memory with SF_xfree when finished using it.

See Also SF_SearchTable

void SF_ExecAutoStamp (CONTROL_REC *pControl)
Executes the intrinsic stamp action of an Auto Stamp control.
Parameter pControl Pointer to the desired Auto Stamp control
Return Value None
Comments Use this function to log the current date and time in records.

WORD SF_FindFirstRow (TABLE_REC *pRec)
Returns the row number of the first record of a table.
Parameter pRec Pointer to the desired table.
Return Value Zero-based row number of the first record in the table if successful; 0xFFFF if

the function fails.
Comments The first record may not be record 0 if there are filters applied to the table.

This function fails if there are no records in the table or if there are no records
that satisfy the criteria of all active filters.

See Also SF_FindLastRow, SF_FindNextRow, SF_FindPrevRow

WORD SF_FindLastRow (TABLE_REC *pRec)
Returns the row number of the last record of a table.
Parameter pRec Pointer to the desired table.
Return Value Zero-based row number of the last record in the table if successful; 0xFFFF if

the function fails.
Comments This function fail if there are no records in the table or if there are no records

that satisfy the criteria of all active filters.
See Also SF_FindFirstRow, SF_FindNextRow, SF_FindPrevRow

Satellite Forms 8
Development Guide

490

SF_FindNextRow

SF_FindPrevRow

SF_FloatAdd

SF_FloatDiv

WORD SF_FindNextRow (TABLE_REC *pRec, WORD RowNum)
Returns the row number of the next record of a table.
Parameters pRec

RowNum
Pointer to the desired table.
Zero-based row number of the current record.

Return Value Zero-based row number of the next record in the table, as referenced from
RowNum, if successful; 0xFFFF if the function fails.

Comments This function fails if there is no next record – record RowNum is the last record
in the table or is the last record in the table that satisfies the criteria of all active
filters.

See Also SF_FindFirstRow, SF_FindLastRow, SF_FindPrevRow

WORD SF_FindPrevRow (TABLE_REC *pRec, WORD RowNum)
Returns the row number of the previous record of a table.
Parameters pRec

RowNum
Pointer to the desired table.
Zero-based row number of the current record.

Return Value Zero-based row number of the previous record in the table, as referenced from
RowNum, if successful; 0xFFFF if the function fails.

Comments This function fails if there is no next record – record RowNum is the first record
in the table or is the first record in the table that satisfies the criteria of all active
filters.

See Also SF_FindFirstRow, SF_FindLastRow, SF_FindNextRow

FlpDouble SF_FloatAdd (FlpDouble n1, FlpDouble n2)
Adds two floating-point numbers.
Parameters n1

n2
Floating-point number.
Floating-point number.

Return Value Floating-point result of the addition.
Comments The floating-point functions are present so that extensions that have simple

floating-point requirements can use the Satellite Forms engine OS-
independent routines. If your extension requires additional floating-point
functionality, you must use OS routines appropriate to the version of the OS
under which your extension is running.

See Also SF_FloatDiv, SF_FloatMul, SF_FloatSub

FlpDouble SF_FloatDiv (FlpDouble n1, FlpDouble n2)
Divides one floating-point number by another.
Parameters n1

n2
Floating-point number.
Floating-point number.

Return Value Floating-point result of division of n1 / n2

Satellite Forms API Reference
Alphabetical API Reference

491

SF_FloatEq

SF_FloatGe

SF_FloatGt

Comments The floating-point functions are present so that extensions that have simple
floating-point requirements can use the Satellite Forms engine OS-
independent routines. If your extension requires additional floating-point
functionality, you must use OS routines appropriate to the version of the OS
under which your extension is running.

See Also SF_FloatAdd, SF_FloatMul, SF_FloatSub

CBOOL SF_FloatEq (FlpDouble n1, FlpDouble n2)
Evaluates whether two floating-point numbers are equal.
Parameters n1

n2
Floating-point number.
Floating-point number.

Return Value TRUE if n1 and n2 are equal; FALSE if they are not equal.
Comments The floating-point functions are present so that extensions that have simple

floating-point requirements can use the Satellite Forms engine OS-
independent routines. If your extension requires additional floating-point
functionality, you must use OS routines appropriate to the version of the OS
under which your extension is running.

See Also SF_FloatGe, SF_FloatGt, SF_FloatLe, SF_FloatLt, SF_FloatNe

CBOOL SF_FloatGe (FlpDouble n1, FlpDouble n2)
Evaluates whether one floating-point number is greater than or equal to another.
Parameters n1

n2
Floating-point number.
Floating-point number.

Return Value TRUE if n1 is greater than or equal to n2; FALSE if not.
Comments The floating-point functions are present so that extensions that have simple

floating-point requirements can use the Satellite Forms engine OS-
independent routines. If your extension requires additional floating-point
functionality, you must use OS routines appropriate to the version of the OS
under which your extension is running.

See Also SF_FloatEq, SF_FloatLe, SF_FloatLt, SF_FloatNe

CBOOL SF_FloatGt (FlpDouble n1, FlpDouble n2)
Evaluates whether one floating-point number is greater than another.
Parameters n1

n2
Floating-point number.
Floating-point number.

Return Value TRUE if n1 is greater than n2; FALSE if not.
Comments The floating-point functions are present so that extensions that have simple

floating-point requirements can use the Satellite Forms engine OS-
independent routines. If your extension requires additional floating-point
functionality, you must use OS routines appropriate to the version of the OS
under which your extension is running.

See Also SF_FloatEq, SF_FloatGe, SF_FloatLe, SF_FloatLt, SF_FloatNe

Satellite Forms 8
Development Guide

492

SF_FloatLe

SF_FloatLt

SF_FloatMul

CBOOL SF_FloatLe (FlpDouble n1, FlpDouble n2)
Evaluates whether one floating-point number is less than or equal to another.
Parameters n1

n2
Floating-point number.
Floating-point number.

Return Value TRUE if n1 is less than or equal to n2; FALSE if not.
Comments The floating-point functions are present so that extensions that have simple

floating-point requirements can use the Satellite Forms engine OS-
independent routines. If your extension requires additional floating-point
functionality, you must use OS routines appropriate to the version of the OS
under which your extension is running.

See Also SF_FloatEq, SF_FloatGe, SF_FloatGt, SF_FloatLt, SF_FloatNe

CBOOL SF_FloatLt (FlpDouble n1, FlpDouble n2)
Evaluates whether one floating-point number is less than another.
Parameters n1

n2
Floating-point number.
Floating-point number.

Return Value TRUE if n1 is less than n2; FALSE if not.
Comments The floating-point functions are present so that extensions that have simple

floating-point requirements can use the Satellite Forms engine OS-
independent routines. If your extension requires additional floating-point
functionality, you must use OS routines appropriate to the version of the OS
under which your extension is running.

See Also SF_FloatEq, SF_FloatGe, SF_FloatGt, SF_FloatLe, SF_FloatNe

FlpDouble SF_FloatMul (FlpDouble n1, FlpDouble n2)
Multiplies two floating-point numbers.
Parameters n1

n2
Floating-point number.
Floating-point number.

Return Value Floating-point result of the multiplication.
Comments The floating-point functions are present so that extensions that have simple

floating-point requirements can use the Satellite Forms engine OS-
independent routines. If your extension requires additional floating-point
functionality, you must use OS routines appropriate to the version of the OS
under which your extension is running.

See Also SF_FloatAdd, SF_FloatDiv, SF_FloatSub

Satellite Forms API Reference
Alphabetical API Reference

493

SF_FloatNe

SF_FloatSub

SF_FormatNumber

CBOOL SF_FloatNe (FlpDouble n1, FlpDouble n2)
Evaluates whether two floating-point numbers are not equal.
Parameters n1

n2
Floating-point number
Floating-point number

Return Value TRUE if n1 and n2 are not equal; FALSE if they are equal.
Comments The floating-point functions are present so that extensions that have simple

floating-point requirements can use the Satellite Forms engine OS-
independent routines. If your extension requires additional floating-point
functionality, you must use OS routines appropriate to the version of the OS
under which your extension is running.

See Also SF_FloatEq, SF_FloatGe, SF_FloatGt, SF_FloatLe, SF_FloatLt

FlpDouble SF_FloatSub (FlpDouble n1, FlpDouble n2)
Subtracts one floating-point number from another.
Parameters n1

n2
Floating-point number.
Floating-point number.

Return Value Floating-point result of the subtraction n1 – n2.
Comments The floating-point functions are present so that extensions that have simple

floating-point requirements can use the Satellite Forms engine OS-
independent routines. If your extension requires additional floating-point
functionality, you must use OS routines appropriate to the version of the OS
under which your extension is running.

See Also SF_FloatAdd, SF_FloatDiv, SF_FloatMul

CBOOL SF_FormatNumber (char *pNum, BYTE MaxLen, BYTE NumDec)
Formats a number. Removes leading zeros and adds trailing zeros in decimal places if
necessary.
Parameters pNum

MaxLen
NumDec

In/Out. Pointer to a string containing the number to be
formatted.
In. Maximum size of formatted number.
In. Number of decimal places.

Return Value TRUE if the formatting is successful; FALSE if the function fails to format the
number.

Comments This function performs an in-place conversion. pNum points to the newly
formatted number. Some examples of this function’s behavior appear below:
pNum In MaxLen NumDec pNum Out Return Value

Satellite Forms 8
Development Guide

494

SF_FormCreateRow

SF_FormDeleteCurrRow

SF_FormDrawAll

1
1.372
1.372

5
4
4

2
2
3

“1.00”
“1.37”
“1.37”

TRUE
TRUE
FALSE

Note that in the third example the number of decimal places was reduced from
that specified in NumDec in order to meet the criteria specified in MaxLen.
MaxLen always takes precedence over NumDec.
This function returns FALSE in this case because it was not able to fit three
decimal places into a total of four spaces. The buffer referenced by pNum
receives the converted number. It must be at least MaxLen + 1 bytes long to
receive the terminating zero of the string.
This function fails if the number contains invalid characters or does not fit in the
specified buffer.

void SF_FormCreateRow (CBOOL fPromptUser)
Creates a record in a form and displays this record.
Parameter fPromptUser Boolean value specifying whether to prompt the user to confirm

the record creation: TRUE prompts; FALSE does not prompt.
Return Value None
Comments This function does everything required to create a new record and change the

form’s current record to the new record. Before creating the new record, this
function validates and saves the form’s current record.

See Also SF_CreateNewRecord, SF_DeleteRecord, SF_FormDeleteCurrRow

void SF_FormDeleteCurrRow (CBOOL fPromptUser)
Deletes the current record from the form’s linked table.
Parameter fPromptUser Boolean value specifying whether to prompt the user to confirm

the record deletion: TRUE prompts; FALSE does not prompt.
Return Value None
Comments This function issues a beep if you try to delete a non-existent record.

SF_FormDeleteCurrRow differs from SF_DeleteRecord in that it
automatically changes the form’s current record to a valid record after
completing the deletion from the table. If you use SF_DeleteRecord, you
must manually change the form’s current record.

See Also SF_CreateNewRecord, SF_DeleteRecord, SF_FormCreateRow,
SF_FormTableSizeChangedNotify, SF_LoadFormWithCurrentRow

void SF_FormDrawAll (CBOOL fMinimal)
Redraws the form.
Parameter fMinimal Boolean value specifying whether all or only parts of the form

should be redrawn.
Return Value None
Comments Always set fMinimal to FALSE to ensure that the entire form is redrawn.

Satellite Forms API Reference
Alphabetical API Reference

495

SF_FormSlotAlloc

SF_FormTableSizeChangedNotify

SF_FormValidate

SF_FreeCachedRecordData

SF_GetActiveRecord

WORD SF_FormSlotAlloc (FormPtr frm)
Allocates a slot for a new control in the OS form structure.
Parameter frm Pointer to the OS form.
Return Value The index of the slot that was created if successful; 0xFFFF if the function fails.

void SF_FormTableSizeChangedNotify (CBOOL fRedrawControl)
Notifies all controls on the current form that the size of the linked table has changed, enabling
the controls to take appropriate action.
Parameter fRedrawControl Boolean value specifying whether to redraw the controls

based on the table size change.
Return Value None
Comments A table’s size changes when records are added or deleted. It is not usually

necessary to use this function because SF_CreateNewRecord,
SF_DeleteRecord, SF_FormCreateRow, and
SF_FormDeleteCurrRow call this function.

CBOOL SF_FormValidate ()
Determines whether all required fields on the current page are filled and all boundary
conditions are satisfied.
Parameter None
Return Value TRUE if all required fields are filled and all boundary conditions satisfied;

FALSE if any required field is not filled or any boundary condition is not
satisfied

Comments If the offending field is an input control, the cursor (caret) is placed in the field.
See Also SF_ValidateField

void SF_FreeCachedRecordData (CACHED_RECORD *pCachedRec)
Discards memory associated with a cached record.
Parameter pCachedRec Pointer to the desired cached record.
Return Value None
Comments If you explicitly cache a record using SF_LockRecordAndCache, you must

remember to free the record’s cached data using this function. Failure to do so
causes a memory leak.

See Also SF_LockRecordAndCache

CACHED_RECORD * SF_GetActiveRecord ()
Retrieves the active record from a cached record.
Parameters None

Satellite Forms 8
Development Guide

496

SF_GetCachedField

SF_GetConfigVar

SF_GetControlAction

Return Value Returns a pointer to the active record; NULL if there is no active record.
Comments The active record is the record currently displayed on the current form. If the

form is not linked to a table, SF_GetActiveRecord returns NULL. The
Satellite Forms engine caches the current record, keeping a copy in the
dynamic heap, for performance reasons.
It is important to understand this concept because you must take into
consideration whether a record is cached or not when editing a table record
directly.
For example, if the record you would like to edit with a script is the active
record, you should edit the cached record instead of the record stored in the
database. If you edit the table record directly, your changes are overwritten
when you move the form to another record.

DB_ITEM * SF_GetCachedField (CACHED_RECORD *pCachedRec, WORD ColIndex)
Retrieves a field’s contents from a cached record.
Parameters pCachedRec

ColIndex
Pointer to the desired cached record.
Index of the column containing the data to retrieve.

Return Value A pointer to a Db_Item structure containing the field’s data; NULL if the
function fails.

Comments The pointer may be either to a block on the dynamic heap or a block on the
database heap.
The field is part of the record and therefore should not be freed individually
when you are finished using it. Instead, if you cached the record yourself using
SF_LockRecordAndCache, free all data in one operation using
SF_FreeCachedRecordData.
Use the data in this field as read-only. If you want to modify the contents of the
field, use SF_SetCachedField to replace the existing field in the cached
record.
The format of the data returned depends on the field type. For more
information, see SF_SetCachedField.

See Also SF_AllocDbItem, SF_SetCachedField, SF_GetFieldCopy,
SF_FreeCachedRecordData, SF_LockRecordAndCache

char * SF_GetConfigVar (char *pName)
Returns the value of the specified key from the configuration section of the current instance of
an SFX Custom control.
Parameter pName Pointer to a zero-terminated key name in the configuration

section of an SFX Custom control.
Return Value The value of the key if found; NULL if not found or if the control is not an SFX

Custom control
Comments The string that pName points to must be upper case.

CONTROL_ACTION * SF_GetControlAction (CONTROL_REC *pControl)
Returns a pointer to the data structure associated with a control’s actions and filters. This is an
internal function and should not normally be used.
Parameter pControl Pointer to the desired control.
Return Value Pointer to the data structure associated with the control.

Satellite Forms API Reference
Alphabetical API Reference

497

SF_GetControlBottom

SF_GetControlDataCopy

SF_GetControlFlags

SF_GetControlLeft

Comments This function is only used with SF_PerformControlAction.
See Also SF_PerformControlAction

WORD SF_GetControlBottom (CONTROL_REC *pControl)
Returns the bottom coordinate of a control.
Parameter pControl Pointer to the desired control.
Return Value The y coordinate of the bottom of the control’s rectangle.
Comments The origin is the upper-left corner of the screen; all coordinates are expressed

in pixels.
See Also SF_GetControlLeft, SF_PointInControl, SF_GetControlRight,

SF_GetControlTop

void * SF_GetControlDataCopy (CONTROL_REC *pControl)
Creates a copy of the data in a control.
Parameter pControl Pointer to the desired control.
Return Value A pointer to a copy of the data if successful; NULL if the function fails.
Comments The data is a zero-terminated string. This function allocates memory using

SF_xmalloc. Free this memory using SF_xfree.

DWORD SF_GetControlFlags (CONTROL_REC *pControl)
Returns the attribute flags of a control.
Parameter pControl Pointer to the desired control.
Return Value Control attribute flags.
Comments The following control flags are defined in SFDefs.h:

CFLAG_COMMON_READONLY: Read-Only
CFLAG_COMMON_NOSAVE: Do not Modify Table
CFLAG_COMMON_ENABLED: Visible
CFLAG_COMMON_ALTSHAPE: Alternate Shape
CFLAG_COMMON_RIGHTANCHOR: Right Anchor
CFLAG_COMMON_REQUIRED: Input Required

WORD SF_GetControlLeft (CONTROL_REC *pControl)
Returns the left coordinate of a control.
Parameter pControl Pointer to the desired control.
Return Value The x coordinate of the left side of the control’s rectangle.
Comments The origin is the upper-left corner of the screen; all coordinates are expressed

in pixels.
See Also SF_GetControlBottom, SF_PointInControl, SF_GetControlRight,

SF_GetControlTop

Satellite Forms 8
Development Guide

498

SF_GetControlNextControl

SF_GetControlOsIndex

SF_GetControlPageNum

SF_GetControlRight

SF_GetControlTop

CONTROL_REC * SF_GetControlNextControl (CONTROL_REC *pControl)
Returns the next control of a form relative to the specified control.
Parameter pControl Pointer to the desired control.
Return Value Pointer to the next control of the form if successful; NULL if the function fails.
Comments This function fails if there is no next control in the form. The next control in a

form is the internally stored next control and not necessarily the next control
the user sees.
Use this function with SF_GetFormFirstControl to iterate through all the
controls on all the pages of a form.

See Also SF_GetFirstForm, SF_GetFormFirstControl, SF_GetFormNextForm

WORD SF_GetControlOsIndex (CONTROL_REC *pControl)
Returns the OS index of the specified Satellite Forms control.
Parameter pControl Pointer to the desired control.
Return Value Index of the specified control in the OS form’s control array if successful;

0xFFFF if the function fails.
Comments Pointers to controls are stored by the OS in an array in the OS form. This

function returns the index in that array.

WORD SF_GetControlPageNum (CONTROL_REC *pControl)
Returns the page number on which a control is located.
Parameter pControl Pointer to the desired control
Return Value Zero-based page number where the control is located.

WORD SF_GetControlRight (CONTROL_REC *pControl)
Returns the right coordinate of a control.
Parameter pControl Pointer to the desired control.
Return Value x coordinate of the right side of the control’s rectangle.
Comments The origin is the upper-left corner of the screen; all coordinates are expressed

in pixels.
See Also SF_GetControlBottom,SF_GetControlLeft, SF_PointInControl,

SF_GetControlTop

WORD SF_GetControlTop (CONTROL_REC *pControl)
Returns the top coordinate of a control.
Parameter pControl Pointer to a control.
Return Value y coordinate of the top of the control’s rectangle.
Comments The origin is the upper-left corner of the screen; all coordinates are expressed

in pixels.
See Also SF_GetControlBottom,SF_GetControlLeft, SF_PointInControl,

SF_GetControlRight

Satellite Forms API Reference
Alphabetical API Reference

499

SF_GetControlType

SF_GetCreatorId

SF_GetCurrentForm

WORD SF_GetControlType (CONTROL_REC *pControl)
Returns the type of a control.
Parameter pControl Pointer to the desired control.
Return Value Type of control.
Comments The following control types are defined in SFDefs.h:

CTRLTYPE_DROPLIST: Drop List
CTRLTYPE_TEXT: Text
CTRLTYPE_TITLE: Title
CTRLTYPE_FIELD: Edit Control
CTRLTYPE_BITMAP: Bitmap
CTRLTYPE_BUTTON: Button
CTRLTYPE_PARAGRAPH: Paragraph
CTRLTYPE_LIST: List
CTRLTYPE_CHECKBOX: Check Box
CTRLTYPE_RADIO: Radio Button
CTRLTYPE_INK: Ink
CTRLTYPE_LOOKUP: Lookup
CTRLTYPE_AUTOSTAMP: Auto Stamp
CTRLTYPE_GRAFFITI: Graffiti Shift Indicator
CTRLTYPE_CUSTOM: Custom Control

SF_GetCreatorId(???)

Parameters

Return Value
Comments
See Also

FORM_HEADER * SF_GetCurrentForm ()
Returns the current form.
Parameters None
Return Value Pointer to the current form.
Comments This function returns the current Satellite Forms form. Do not confuse this with

the OS form. To get the OS form, use SF_GetFormOsFormPtr.
See Also SF_GetFormOsFormPtr

Satellite Forms 8
Development Guide

500

SF_GetEngineVersion

SF_GetExtensionControl

SF_GetFieldCopy

SF_GetFieldOffset

DWORD SF_GetEngineVersion ()
Retrieves the full version number of the Satellite Forms engine.
Parameters None
Return Value A DWORD value representing the version of the Satellite Forms engine.
Comments The version number is encoded in hexadecimal as 00MMmmRR, where MM

represents the major version, mm the minor version, and RR the revision
number. The engine typically displays this number in its About box as
MM.mm.RR. For example, 3.0.2.

CONTROL_REC * SF_GetExtensionControl ()
Returns a pointer to the Satellite Forms control associated with an SFX Custom control.
Parameters None
Return Value Pointer to a Satellite Forms control.
Comments All SFX Custom controls are associated with Satellite Forms controls.

DB_ITEM * SF_GetFieldCopy (TABLE_REC *pRec, WORD RowNum, WORD ColIndex)
Retrieves a copy of the contents of the specified field.
Parameters pRec

RowNum
ColIndex

Pointer to the table containing the field whose contents are to be
retrieved.
Number of the row containing the data to be retrieved.
Index of the column containing the data.

Return Value A pointer to the allocated copy of the data in the specified field; NULL if the
function fails.

Comments This function is different from the similar function SF_GetCachedField in
certain important respects. The data returned from this function is always on
the dynamic heap so it can be readily modified. This also means that when you
are done with the date, you must free it by calling SF_xfree to avoid causing
a memory leak.
Another difference is that you do not need to cache a record explicitly with
SF_LockRecordAndCache before using this function.
Caution: If the record being referenced is currently cached, any changes you
make may be overwritten when the cache is committed.

WORD SF_GetFieldOffset (BYTE *pRecord, WORD ColIndex)
Returns the offset from the beginning of a record to a particular field.
Parameters pRecord

ColIndex

Pointer to a locked memory block containing the desired
Satellite Forms table record.
Index of the column that represents the desired field.

Return Value The offset, in bytes, to the specified field; xFFFF if the function fails.
Comments This function is used internally by the engine to find fields within a record. This

function cannot be used with cached records.

Satellite Forms API Reference
Alphabetical API Reference

501

SF_GetFirstField(Obsolete. Do not use)

SF_GetFirstForm

SF_GetFocusObjectPtr

SF_GetFormCurrentRow

SF_GetFormCurrPage

WORD SF_GetFirstField (TABLE_REC *pRec, WORD RowNum)
Returns the OS record for the first field in the specified record. This is an internal system
function and is not normally used.
Parameters pRec

RowNum
Pointer to the desired table.
Zero-based row number of the desired record.

Return Value OS record number of the first field of the specified row.
Comments Caution: This function is dependent on the Satellite Forms internal data

structures and may change in the future.

FORM_HEADER * SF_GetFirstForm ()
Returns the first form in the application.
Parameters None
Return Value Pointer to the first form in the application
Comments The first form in the application is the internally stored first form and not

necessarily the initial form that the user sees when the application starts. Use
this function with SF_GetFormNextForm when you need to iterate through
all the forms in an application.

See Also SF_GetControlNextControl, SF_GetFormFirstControl, SF_GetFormNextForm

FieldPtr SF_GetFocusObjectPtr ()
Returns the OS field object that has the current focus.
Parameters None
Return Value Pointer to the underlying OS field that has the current focus if successful;

NULL if the function fails.
Comments This function fails if no object has focus.

WORD SF_GetFormCurrentRow (FORM_HEADER *pForm)
Returns the row number of the current record in a form.
Parameter pForm Pointer to the desired form.
Return Value Zero-based row number of the current record if successful; 0xFFFF if the

function fails.
Comments This function fails if there is no current row, that is, if the form is not linked to a

table or if no rows meet the criteria of all active filters.
See Also SF_GetFormCurrPage

WORD SF_GetFormCurrPage (FORM_HEADER *pForm)
Returns the page number of the current page on the current form.
Parameter pForm Pointer to the current form.
Return Value Zero-based page number of the current page on the current form
See Also SF_GetFormCurrentRow

Satellite Forms 8
Development Guide

502

SF_GetFormFirstControl

SF_GetFormFlags

SF_GetFormNextForm

SF_GetFormNumPages

CONTROL_REC * SF_GetFormFirstControl (FORM_HEADER *pForm)
Returns a pointer to the first control on a form.
Parameter pForm Pointer to the desired form.
Return Value Pointer to the first control of the form if successful; NULL if the function fails.
Comments This function fails if there are no controls on the specified form. The first control

of the application is the internally stored first control and not necessarily the
first control that the user sees.
Use this function with SF_GetControlNextControl when you need to
iterate through all the controls on a form.

See Also SF_GetControlNextControl, SF_GetFirstForm, SF_GetFormNextForm

WORD SF_GetFormFlags (FORM_HEADER *pForm)
Returns the attribute flags for a form.
Parameter pForm Pointer to the desired form.
Return Value Form attribute flags.
Comments The following form flags are defined in SFDefs.h. These flags set the user

permissions for the form.
FFLAG_ALLOWCREATE: Create Record
FFLAG_ALLOWDELETE: Delete Record
FFLAG_ALLOWMODIFY: Modify
FFLAG_ALLOWNAV: Navigate
FFLAG_ALLOWDELETELAST: Delete Last Record

FORM_HEADER * SF_GetFormNextForm (FORM_HEADER *pForm)
Returns a pointer to the next form in an application relative to the specified form.
Parameter pForm Pointer to the referenced form.
Return Value Pointer to the next form of the application if successful; NULL if the function

fails.
Comments This function fails if there is no next form in the application. The next form of an

application is the internally stored next form and not necessarily the next form
the user sees.
Use this function with SF_GetFirstForm to iterate through all the forms in
an application.

See Also SF_GetControlNextControl, SF_GetFirstForm, SF_GetFormFirstControl

WORD SF_GetFormNumPages (FORM_HEADER *pForm)
Returns the number of pages in a form.
Parameter pForm Pointer to the desired form.
Return Value Number of pages in the form.

Satellite Forms API Reference
Alphabetical API Reference

503

SF_GetFormOsFormPtr

SF_GetFormReturnIndex

SF_GetFormTableIndex

SF_GetGlobalPtr

SF_GetInstanceDataPtr

FormPtr SF_GetFormOsFormPtr (FORM_HEADER *pForm)
Returns the OS form that corresponds to a Satellite Forms form.
Parameter pForm Pointer to the desired Satellite Forms form
Return Value Pointer to the OS form that corresponds to the Satellite Forms form.
Comments This function returns the OS form. Do not confuse it with the Satellite Forms

form. To get a Satellite Forms form, use SF_GetCurrentForm.
See Also SF_GetCurrentForm

WORD SF_GetFormReturnIndex (FORM_HEADER *pForm)
Returns the index of the form that called a specified form.
Parameter pForm Pointer to the desired form.
Return Value Index of the calling form if successful; 0xFFFF if the function fails.
Comments Use this function to determine the form that called a specified form. This is

useful when you want to enable the user to return to the calling form after
completing an operation in the called form.

WORD SF_GetFormTableIndex (FORM_HEADER *pForm)
Returns the index of a form’s linked table.
Parameter pForm Pointer to the desired form.
Return Value Index of the form’s linked table if successful;0xFFFF if the function fails.
Comments This function fails if there is no table linked to the specified form.

void * SF_GetGlobalPtr ()
Returns a pointer to the global data area used by an SFX Custom control.
Parameters None
Return Value Pointer to the global data area used by an SFX Custom control.
Comments The global data area is common to all instances of one type of SFX Custom

control.
See Also SF_SetGlobalPtr, SF_GetInstanceDataPtr, SF_SetInstanceDataPtr

void * SF_GetInstanceDataPtr ()
Returns a pointer to the instance data area used by an SFX Custom control.
Parameters None
Return Value Pointer to the instance data area used by an SFX Custom control.
Comments The instance data area is specific to a single instance of an SFX Custom

control. Each instance of a control shares a common global data area while
maintaining its own instance data area.
Set the pointer to the instance data area with SF_SetInstanceDataPtr.

See Also SF_GetGlobalPtr, SF_SetGlobalPtr, SF_SetInstanceDataPtr

Satellite Forms 8
Development Guide

504

SF_GetNumRows

SF_GetRowItemCopy(Obsolete. Do not use.)

SF_GetSysTime

SF_GetTableColNumDecimals

SF_GetTableColType

WORD SF_GetNumRows (TABLE_REC *pRec)
Returns the number of records in a table (affected by filters).
Parameter pRec Pointer to the desired table.
Return Value Number of records in the table.
Comments If a table has no records or if no records meet the criteria of all active filters,

this function returns zero.

void * SF_GetRowItemCopy (TABLE_REC *pRec, WORD RowNum, WORD ColIndex,
WORD *pSize)
Copies data from a record.
Parameters pRec

RowNum

ColIndex
pSize

Pointer to the desired table.
Zero-based row number of record from which data is to be
copied.
Index of column from which data is to be copied.
Pointer to a WORD that receives the size of the data, not
including the terminating zero.

Return Value Copy of data from the specified table, row, and column if successful; NULL if
the function fails.

Comments Set the input parameter pSize to NULL if you are not interested in the size of
the data. This function allocates memory with SF_xmalloc. Free this memory
with SF_xfree.

See Also SF_CommitItemToRow (Obsolete. Do not use.),
SF_ConvertInternalToDisplayFormat

DWORD SF_GetSysTime ()
Returns the number of seconds since 00:00:00, January 1, 1904.
Parameters None
Return Value Seconds since 00:00:00, January 1, 1904.

WORD SF_GetTableColNumDecimals (TABLE_REC *pRec, WORD ColIndex)
Returns the number of decimal places in a numeric column.
Parameters pRec

ColIndex
Pointer to the desired table.
Index of the desired numeric column.

Return Value The number of decimal places in the column.
See Also SF_GetTableColType, SF_GetTableColWidth

WORD SF_GetTableColType (TABLE_REC *pRec, WORD ColIndex)
Returns a column’s type.
Parameters pRec

ColIndex
Pointer to the desired table.
Index of the desired column.

Return Value The column’s type.

Satellite Forms API Reference
Alphabetical API Reference

505

SF_GetTableColWidth

SF_GetUIObjectParent

SF_GotoNewForm

Comments The following column types are defined in SFDefs.h.
PDA_FIELDTYPE_CHAR: Character
PDA_FIELDTYPE_DATE: Date
PDA_FIELDTYPE_TIME: Time
PDA_FIELDTYPE_INTEGER: Integer
PDA_FIELDTYPE_FLOAT: Float
PDA_FIELDTYPE_LOGICAL: True/False
PDA_FIELDTYPE_INK: Ink
PDA_FIELDTYPE_INT64: 64-bit Integer
PDA_FIELDTYPE_TIMESTAMP: Time Stamp
PDA_FIELDTYPE_ERROR: Error Condition

See Also SF_GetTableColNumDecimals, SF_GetTableColWidth

WORD SF_GetTableColWidth (TABLE_REC *pRec, WORD ColIndex)
Returns the maximum width of a column.
Parameters pRec

ColIndex
Pointer to the desired table.
Index of the desired column.

Return Value The maximum width of the column in characters.
See Also SF_GetTableColNumDecimals, SF_GetTableColType

CONTROL_REC * SF_GetUIObjectParent (void *pObject)
Returns a pointer to the Satellite Forms control associated with a specified OS control.
Parameter pObject Pointer to OS control.
Return Value Pointer to a Satellite Forms control if successful; NULL if the function fails.
Comments Only call this function for OS controls the Satellite Forms engine creates, not

for controls that you create yourself with OS API.
See Also SF_OsIndexToControlRec

CBOOL SF_GotoNewForm (WORD NewFormIndex, WORD JumpOpt, CBOOL
fSaveRetIndex)
Jumps to a new form. The new form becomes the current form.
Parameters NewFormIndex

JumpOpt
fSaveRetIndex

Index of the new form.
Record creation options.
Flag that specifies whether to save the index of the calling
form.

Return Value TRUE if the jump is successful; FALSE if not.

Satellite Forms 8
Development Guide

506

SF_GotoRow

SF_IdToControlRec

SF_IdToObjectPtr

SF_InfoMsg

SF_InfoMsgInt

Comments This function fails if the jump option Fail if no records is set and there are no
records in the target form that satisfy all active filters.
The following record creation types associated with the jump are defined in
SFDefs.h.
JUMPOPT_CREATE_IF_NONE: Create if no records
JUMPOPT_ALLOW_IF_NONE:Allow if no records
JUMPOPT_FAIL_IF_NONE:Fail if no records
JUMP_OPT_ALWAYS_CREATE: Always create record

void SF_GotoRow (WORD NewRow, CBOOL fSaveCurrent, CBOOL fNotifyRecCreate)
Makes the specified record the current record.
Parameters NewRow

fSaveCurrent

fNotifyRecCreate

Zero-based row number of the record that becomes the
current record.
Flag that specifies whether to save the contents of the
controls to the current record before switching records.
Flag that specifies whether to fire the form event
AfterRecCreate after the move to the new record

Return Value None
Comments Set the flag fSaveCurrent to TRUE unless the current record has been deleted.

CONTROL_REC * SF_IdToControlRec (WORD ControlId)
Converts an OS control ID to a pointer to the OS control.
Parameter ControlId OS control ID.
Return Value Pointer to the corresponding OS control if successful; NULL if the function fails.

void * SF_IdToObjectPtr (WORD ObjectId)
Converts an OS object ID to a pointer to the Satellite Forms object.
Parameter ObjectId OS Object ID.
Return Value Pointer to the Satellite Forms object if successful; NULL if the function fails.

void SF_InfoMsg (char *p)
Displays a dialog box containing a message and an OK button.
Parameter p Pointer to a string containing the message displayed in the

dialog box.
Return Value None
See Also SF_ConfirmMsg, SF_InfoMsgInt

void SF_InfoMsgInt (char *p, DWORD d)
Displays a dialog box containing a message followed by an integer.

Satellite Forms API Reference
Alphabetical API Reference

507

SF_InstallHandler

SF_InternalDateToSysDate

Parameters p

d

Pointer to a string containing the message displayed in the dialog
box.
Integer that is concatenated to the message.

Return Value None
See Also SF_ConfirmMsg, SF_InfoMsg

void SF_InstallHandler (int EventIndex, CBOOL *pHandler)
Installs an event handler.
Parameters EventIndex

pHandler
Event to be handled.
Pointer to the event handler function.

Return Value None
Comments Note that the AfterOpen and BeforeClose events in the API differ from the

corresponding events in the scripting language. In the scripting language, these
events fire one time per form, upon entry and exit of the form. In the API, they fire
one time per page, upon entry and exit of the page.
The following event types are defined in SFDefs.h:
SF_Handler_Form_AfterOpen: Occurs after a form or a form’s page is
opened.
SF_Handler_Form_AfterLoad: Occurs after the controls on a form are
loaded with data from the form’s table
SF_Handler_Form_AfterChange: Occurs after data in any field on the form
changes.
SF_Handler_Form_AfterRecCreate: Occurs after a new record is
created in a form.
SF_Handler_Form_BeforeClose: Occurs before a form or page is closed
(exited).
SF_Handler_Form_BeforeRecDelete: Occurs before a record is deleted
from a form.
SF_Handler_Form_Onvalidate: Occurs when a form is validated.
SF_Handler_OnExtLoad: Occurs when the application is opened and the
extension is loaded.
SF_Handler_OnExtUnload: Occurs when the application is closed and the
extension is unloaded.
SF_Handler_OnFormEvent: Occurs when the OS issues a form event.
SF_Handler_OnSysEvent: Occurs when the OS issues a system event.
SF_Handler_OnSfxNotify: Occurs when a user accesses one of the
methods of an SFX Custom control or the system notifies an SFX Custom control.

long SF_InternalDateToSysDate (char *pInternal)
Converts the Satellite Forms internal date representation in YYYYMMDD format to days since
January 1, 1904.
Parameter pInternal Pointer to a string containing a date in Satellite Forms internal

date representation.
Return Value Days since January 1, 1904.
See Also SF_InternalTimeToSysTime, SF_GetSysTime, SF_SysDateToInternalDate,

SF_SysTimeToInternalTime

Satellite Forms 8
Development Guide

508

SF_InternalTimeToSysTime

SF_InternalToPilotDate

SF_InternalToPilotTime

SF_itoa

long SF_InternalTimeToSysTime (char *pInternal)
Converts the Satellite Forms internal time representation in 24-hour HH:MM:SS format to
seconds since midnight.
Parameter pInternal Pointer to a string containing a time in Satellite Forms internal

time representation.
Return Value Seconds since midnight.
See Also SF_InternalDateToSysDate, SF_GetSysTime, SF_SysDateToInternalDate,

SF_SysTimeToInternalTime

void SF_InternalToPilotDate (char *pPilotDate, DB_ITEM *pInternal)
Converts the Satellite Forms internal representation of date to the OS representation.
Parameters pPilotDate

pInternal
Pointer to a buffer that receives the OS date representation.
Pointer to a zero-terminated string in the internal Satellite Forms
date format.

Return Value None
Comments The Satellite Forms internal date representation is in year 2000-compliant

YYYYMMDD format. The country–specific OS date representation is set in the
handheld device’s preferences. The buffer that receives the handheld device
date representation must be at least 11 bytes in length.

See Also SF_InternalToPilotTime, SF_PilotDateToInternal, SF_PilotTimeToInternal,
SF_InternalDateToSysDate, SF_InternalTimeToSysTime,
SF_SysDateToInternalDate, SF_SysTimeToInternalTime

void SF_InternalToPilotTime (char *pPilotTime, DB_ITEM *pInternal)
Converts the Satellite Forms internal representation of time to the OS representation.
Parameters pPilotTime

pInternal

Pointer to a buffer that receives the handheld device time
representation.
Pointer to a zero-terminated string in the internal Satellite Forms
time format.

Return Value None
Comments The Satellite Forms internal time representation is in 24-hour HH:MM:SS

format. The country–specific OS time representation is set in the handheld
device’s preferences. The buffer that receives the handheld device time
representation must be at least 12 bytes in length.

See Also SF_InternalToPilotDate, SF_PilotDateToInternal, SF_PilotTimeToInternal,
SF_InternalDateToSysDate, SF_InternalTimeToSysTime,
SF_SysDateToInternalDate, SF_SysTimeToInternalTime

char * SF_itoa (const char *pszStr, long i)
Converts an integer to a string.
Parameter pszStr Pointer to the string where the result is stored.

i Integer to convert.
Return Value Pointer to the converted string.

Satellite Forms API Reference
Alphabetical API Reference

509

SF_itoh

SF_LoadCtrlObjFromCachedRecord

SF_LoadDropListFromCachedRecord

SF_LoadFieldFromCachedRecord

char * SF_itoh (char *pszStr, DWORD i)
Converts an integer to a hexadecimal ASCII string.
Parameter pszStr Pointer to the string where the result is stored.

i Integer to convert.
Return Value Pointer to the converted string.

void SF_LoadCtrlObjFromCachedRecord (FormPtr frm, CONTROL_REC *pControl,
CACHED_REC *pCachedRec)
Loads a Check Box or Radio Button control with data from a cached record. Replaces
SF_LoadCtrlObjFromRow.
Parameters frm

pControl

pCachedRec

Pointer to the desired OS form.
Pointer to the Check Box or Radio Button control that receives
the data.
Pointer to the desired cached record.

Return Value None
Comments The control knows the column of the table to which it is bound.
See Also SF_LoadDropListFromCachedRecord, SF_LoadFieldFromCachedRecord,

SF_LoadInkFieldFromCachedRecord, SF_SaveCtrlObjToCachedRecord,
SF_SaveDropListToCachedRecord, SF_SaveFieldToCachedRecord,
SF_SaveInkFieldToCachedRecord

void SF_LoadDropListFromCachedRecord (FormPtr frm, CONTROL_REC *pControl,
CACHED_RECORD *pCachedRec)
Loads a Drop List control with data from a cached record. Replaces
SF_LoadDropListFromRow.
Parameters frm

pControl
pCachedRec

Pointer to the desired OS form.
Pointer to the Drop List control that receives the data.
Pointer to the desired cached record.

Return Value None
Comments The control knows the column of the table to which it is bound. The control also

knows the associated lookup table and performs a lookup.
See Also SF_LoadCtrlObjFromCachedRecord, SF_LoadFieldFromCachedRecord,

SF_LoadInkFieldFromCachedRecord, SF_SaveCtrlObjToCachedRecord,
SF_SaveDropListToCachedRecord, SF_SaveFieldToCachedRecord,
SF_SaveInkFieldToCachedRecord

void SF_LoadFieldFromCachedRecord (FormPtr frm, CONTROL_REC *pControl,
CACHED_RECORD *pCachedRec)
Loads an edit control with data from a cached record. Replaces SF_LoadFieldFromRow.
Parameters frm

pControl
pCachedRec

Pointer to the desired OS form.
Pointer to the Edit control that receives the data.
Pointer to the desired cached record.

Return Value None

Satellite Forms 8
Development Guide

510

SF_LoadFormWithCurrentRow

SF_LoadInkFieldFromCachedRecord

SF_LockRecordAndCache

Comments The control knows the column of the table to which it is bound.
See Also SF_LoadCtrlObjFromCachedRecord, SF_LoadDropListFromCachedRecord,

SF_LoadInkFieldFromCachedRecord, SF_SaveCtrlObjToCachedRecord,
SF_SaveDropListToCachedRecord, SF_SaveFieldToCachedRecord,
SF_SaveInkFieldToCachedRecord

void SF_LoadFormWithCurrentRow ()
Loads the controls on the current page with data from the current record of the form’s linked
table.
Parameters None
Return Value None
Comments If there is no current row, this function does nothing.

void SF_LoadInkFieldFromCachedRecord (FormPtr frm, CONTROL_REC *pControl,
CACHED_RECORD *pCachedRec)
Loads an Ink control with data from a cached record. Replaces
SF_LoadInkFieldFromRow.
Parameters frm

pControl
pCachedRec

Pointer to the desired OS form.
Pointer to the Ink control that receives the data.
Pointer to the desired cached record

Return Value None
Comments The control knows the column of the table to which it is bound.
See Also SF_LoadCtrlObjFromCachedRecord, SF_LoadDropListFromCachedRecord,

SF_LoadFieldFromCachedRecord, SF_SaveCtrlObjToCachedRecord,
SF_SaveDropListToCachedRecord, SF_SaveFieldToCachedRecord,
SF_SaveInkFieldToCachedRecord

CACHED_RECORD * SF_LockRecordAndCache (TABLE_REC *pRec, WORD RowNum)
Locks the specified record and caches it in dynamic memory.
Parameters pRec

RowNum
Pointer to the desired table.
Row number of record to cache.

Return Value A pointer to the newly allocated block of memory that contains the cached
record.

Comments Call this function to cache a record into memory.
Since records comprise several compacted fields, the easiest way to modify a
field is to cache the record, use SF_GetCachedField to modify it, and then
use SF_CommitCachedRecord to save it back to its table.
If you do not commit a cached record, you must call
SF_FreeCachedRecordData to dispose of its data. Failure to free the
cached record results in a memory leak.

See Also SF_GetCachedField, SF_SetCachedField, SF_FreeCachedRecordData

Satellite Forms API Reference
Alphabetical API Reference

511

SF_LockRowItem(Obsolete. Do not use)

SF_memcpy

SF_memset

SF_memsize

SF_OsIndexToControlRec

Void * SF_LockRowItem (TABLE_REC *pRec, WORD RowNum, WORD ColIndex, WORD
*pSize)
Locks a value in memory. This is an internal function and not normally used.
Parameters pRec

RowNum
ColIndex
pSize

Pointer to the desired table.
Zero-based row number of record containing the data.
Index of column containing the data.
Pointer to a WORD that receives the size of the value, not
including the terminating zero.

Return Value Pointer to the actual value in database memory.
Comments This value is read-only because database memory is read-only.
See Also SF_GetRowItemCopy (Obsolete. Do not use.), SF_ResizeLockedRecord

(Obsolete. Do not use.), SF_UnlockRowItem (Obsolete. Do not use)

SF_memcpy(??? ???)
Copies one block of memory into another.
Parameters ??? ???

??? ???
Return Value ???

Err SF_memset (void *pDest, long numBytes, BYTE value)
Fills a range of dynamic memory range with the specified value.
Parameters pDest Pointer to the block of memory to fill.

njmBytes Number of bytes to fill.
value Value to be filled into the memory range.

Return Value Returns 0 if successful; error code if the function fails.

DWORD SF_memsize (const void *p)
Returns the size of the specified pointer.
Parameters p The desired pointer.
Return Value Returns the size of the specified pointer.

CONTROL_REC * SF_OsIndexToControlRec (WORD ObjIndex)
Converts an index in the OS form’s control array to a pointer to the corresponding Satellite
Forms control.
Parameter ObjIndex Index of the desired control in the OS control array.
Return Value Pointer to the Satellite Forms control if successful; NULL if the function fails.
Comments Only call this function for OS controls the Satellite Forms engine creates, not

for controls that you create yourself with OS API.
See Also SF_GetUIObjectParent

Satellite Forms 8
Development Guide

512

SF_PerformControlAction

SF_PilotDateToInternal

SF_PilotTimeToInternal

SF_PointInControl

CBOOL SF_PerformControlAction (CONTROL_REC *pControl)
Executes the action associated with a control.
Parameter pControl Pointer to a control.
Return Value TRUE if the action is executed successfully; FALSE if it failed to execute

successfully.
See Also SF_GetControlAction

CBOOL SF_PilotDateToInternal (DB_ITEM *pInternal, char *pPilotDate)
Converts the OS representation of date to the Satellite Forms internal representation.
Parameters pInternal

pPilotDate
Pointer to a buffer that receives the internal date representation.
Pointer to a zero-terminated string in the handheld device date
format.

Return Value TRUE if the conversion is successful; FALSE if the function fails.
Comments The Satellite Forms internal date representation is in year 2000-compliant

YYYYMMDD format. The country–specific OS time representation is set in the
handheld device’s preferences. The buffer that receives the internal date
representation must be at least 9 bytes in length.

See Also SF_InternalToPilotDate, SF_InternalToPilotTime, SF_PilotTimeToInternal,
SF_InternalDateToSysDate, SF_InternalTimeToSysTime,
SF_SysDateToInternalDate, SF_SysTimeToInternalTime

CBOOL SF_PilotTimeToInternal (DB_ITEM *pInternal, char *pPilotTime)
Converts the OS representation of time to the Satellite Forms internal representation.
Parameters pInternal

pPilotTime
Pointer to a buffer that receives the internal time representation.
Pointer to a zero-terminated string in the handheld device time
format.

Return Value TRUE if the conversion is successful; FALSE the function fails.
Comments The Satellite Forms internal time representation is in 24-hour HH:MM:SS

format. The country–specific OS time representation is set in the handheld
device’s preferences. The buffer that receives the internal time representation
must be at least 9 bytes in length.

See Also SF_InternalToPilotDate, SF_InternalToPilotTime, SF_PilotDateToInternal,
SF_InternalDateToSysDate, SF_InternalTimeToSysTime,
SF_SysDateToInternalDate, SF_SysTimeToInternalTime

CBOOL SF_PointInControl (CONTROL_REC *pControl, WORD x, WORD y)
Determines if a point, identified by an (x,y) coordinate, lies within a control’s rectangle.
Parameters pControl

x
y

Pointer to the desired control.
x coordinate of a point
y coordinate of a point

Return Value TRUE if the (x,y) coordinate lies within the control’s rectangle; FALSE if the
(x,y) coordinate lies outside the control’s rectangle

Satellite Forms API Reference
Alphabetical API Reference

513

SF_PointToControlRec

SF_QueryField

Comments The origin is the upper-left corner of the screen; all coordinates are expressed
in pixels.

See Also SF_GetControlBottom,SF_GetControlLeft, SF_GetControlRight,
SF_GetControlTop

CONTROL_REC * SF_PointToControlRec (WORD xPos, WORD yPos, WORD CtrlType)
Converts a point, identified by an (x,y) coordinate, into a pointer to a control that is located at
that position.
Parameters xPos

yPos
CtrlType

x coordinate of the desired point.
y coordinate of the desired point.
Type of control, or zero.

Return Value Pointer to the control if successful; NULL if there is no control at the desired
coordinates.

Comments Only controls of type CtrlType are checked To check all controls, pass zero as
CtrlType. The following control types are defined in SFDefs.h:
CTRLTYPE_DROPLIST: Drop List
CTRLTYPE_TEXT: Text
CTRLTYPE_TITLE: Title
CTRLTYPE_EDIT: Edit Control
CTRLTYPE_BITMAP: Bitmap
CTRLTYPE_BUTTON: Button
CTRLTYPE_PARAGRAPH: Paragraph
CTRLTYPE_LIST: List Box
CTRLTYPE_CHECKBOX: Check Box
CTRLTYPE_RADIO: Radio Button
CTRLTYPE_INK: Ink
CTRLTYPE_LOOKUP: Lookup
CTRLTYPE_AUTOSTAMP: Auto Stamp
CTRLTYPE_GRAFFITI: Graffiti Shift Indicator
CTRLTYPE_CUSTOM: Custom Control

DB_ITEM * SF_QueryField (TABLE_REC *pRec, WORD RowNum, WORD ColIndex)
Provides a fast way to obtain a read-only pointer to a field.
Parameters pRec

RowNum
ColIndex

Pointer to the desired table.
Row number of record to be accessed.
Index of the desired field.

Return Value Read-only pointer to the specified field; NULL if an error occurs.
Comments If you do not need to modify the data, this function provides a fast alternative to

SF_GetFieldCopy or SF_GetCachedField.
Caution: You must call SF_UnqueryField to release a field accessed with
this function. Failure to do so leaves records locked in the table.

See Also SF_UnqueryField

Satellite Forms 8
Development Guide

514

SF_RenderInk

SF_ResizeLockedRecord(Obsolete. Do not use.)

SF_RowMeetsCriteria

SF_SaveCtrlObjToCachedRecord

void SF_RenderInk (CONTROL_REC *pControl, TABLE_REC *pRec, WORD RowNum)
Redraws the contents of an Ink control.
Parameters pControl

pRec
RowNum

Pointer to the desired ink control.
Pointer to the desired table.
Zero-based row number of the desired record in the table.

Return Value None
Comments The control knows the column to which it is bound.

void * SF_ResizeLockedRecord (TABLE_REC *pRec, WORD RowNum, WORD ColIndex)
Resizes a value locked with SF_LockRowItem. This is an internal system function and not
normally used.
Parameters pRec

RowNum
ColIndex

Pointer to the desired table.
Zero-based row number of record containing the data.
Index of column containing the data.

Return Value Pointer to the resized value in database memory.
Comments The location of the value may move as a result of the resizing.
See Also SF_LockRowItem (Obsolete. Do not use), SF_UNLOCKROWITEM (OBSOLETE.

DO NOT USE)

CBOOL SF_RowMeetsCriteria (TABLE_REC *pRec, WORD RowNum)
Determines whether a record meets the criteria of all active filters.
Parameters pRec

RowNum
Pointer to the desired table.
Zero-based row number of record to be tested.

Return Value TRUE if the record meets the criteria of all active filters; FALSE if the record
fails to meet some or all criteria.

void SF_SaveCtrlObjToCachedRecord (CONTROL_REC *pControl, CACHED_RECORD
*pCachedRec)
Saves the contents of a Check Box or Radio Button control to a cached record. Replaces
SF_SaveCtrlObjToRow.
Parameters pControl

pCachedRec
Pointer to the desired Check Box or Radio Button control.
Pointer to the desired cached record.

Return Value None
Comments The control knows the column of the table to which it is bound.
See Also SF_LoadCtrlObjFromCachedRecord, SF_LoadDropListFromCachedRecord,

SF_LoadFieldFromCachedRecord, SF_LoadInkFieldFromCachedRecord, ,
SF_SaveDropListToCachedRecord, SF_SaveFieldToCachedRecord,
SF_SaveInkFieldToCachedRecord

Satellite Forms API Reference
Alphabetical API Reference

515

SF_SaveDropListToCachedRecord

SF_SaveFieldToCachedRecord

SF_SaveInkFieldToCachedRecord

SF_ScriptExecExt

void SF_SaveDropListToCachedRecord (CONTROL_REC *pControl, CACHED_RECORD
*pCachedRec)
Saves the contents of a Drop List control to a cached record. Replaces
SF_SaveDropListToRow.
Parameters pControl

pCachedRec
Pointer to the desired drop list control.
Pointer to the desired cached record.

Return Value None
Comments The control knows the column of the table to which it is bound.
See Also SF_LoadCtrlObjFromCachedRecord, SF_LoadDropListFromCachedRecord,

SF_LoadFieldFromCachedRecord, SF_LoadInkFieldFromCachedRecord,
SF_SaveCtrlObjToCachedRecord, SF_SaveFieldToCachedRecord,
SF_SaveInkFieldToCachedRecord

void SF_SaveFieldToCachedRecord (CONTROL_REC *pControl, CACHED_RECORD
*pCachedRec)
Saves the contents of an Edit control to a cached record. Replaces SF_SaveFieldToRow.
Parameters pControl

pCachedRec
Pointer to the desired edit control.
Pointer to the desired cached record.

Return Value None
Comments The control knows the column of the table to which it is bound.
See Also SF_LoadCtrlObjFromCachedRecord, SF_LoadDropListFromCachedRecord,

SF_LoadFieldFromCachedRecord, SF_LoadInkFieldFromCachedRecord,
SF_SaveCtrlObjToCachedRecord, SF_SaveDropListToCachedRecord,
SF_SaveInkFieldToCachedRecord

void SF_SaveInkFieldToCachedRecord (CONTROL_REC *pControl, CACHED_RECORD
*pCachedRec)
Saves the contents of an Ink control to a cached record. Replaces
SF_SaveInkFieldToRow.
Parameters pControl

pCachedRec
Pointer to the desired ink control.
Pointer to the desired cached record.

Return Value None
Comments The control knows the column of the table to which it is bound.
See Also SF_LoadCtrlObjFromCachedRecord, SF_LoadDropListFromCachedRecord,

SF_LoadFieldFromCachedRecord, SF_LoadInkFieldFromCachedRecord,
SF_SaveCtrlObjToCachedRecord, SF_SaveDropListToCachedRecord,
SF_SaveFieldToCachedRecord

Void SF_ScriptExecExt (char NumArgs, int ExtIndex, int CtrlIndex, CBOOL fIsFunc)
Executes a method of an extension.

Satellite Forms 8
Development Guide

516

SF_ScriptFloatToString

SF_ScriptFreeParamMem

SF_ScriptGetTosPtr

SF_ScriptPopFloat

Parameters NumArgs
ExtIndex
CtrlIndex
fIsFunc

Number of arguments pushed onto the stack.
Index of the desired extension.
Index of the desired control.
Flag that specifies if the extension is a function – if it returns a
value on the stack.

Return Value Stack Result. Whatever the extension pushes onto the evaluation stack if the
extension is a function; if the extension is not a function, there is no return
value.

Comments The return value is pushed on the interpreter's evaluation stack, not the
processor stack. To access the evaluation stack, use the SF_Push* and
SF_Pop* functions.

void SF_ScriptFloatToString (FlpDouble FloatVal, char *pBuff, BYTE BuffSize, char
NumDec)
Converts a floating-point value into a string.
Parameters FloatVal

pBuff
BuffSize
NumDec

Floating-point value to be converted.
Pointer to a buffer that receives the formatted value.
Size of the buffer.
Number of decimal places to use in formatting.

Return Value None
Comments Pass -1 in NumDec to use the minimum possible number of decimal places.

Trailing zeros and the decimal point are omitted if not necessary.

void SF_ScriptFreeParamMem (STACK_ITEM *pParam)
Frees memory associated with a parameter. This is an internal function and should not
normally be used.
Parameter pParam Pointer to an item on the stack.
Return Value None
Comments Normally, the SF_Pop* functions free memory, making it unnecessary to use

this function.

STACK_ITEM * SF_ScriptGetTosPtr ()
Returns a pointer to the item on the top of the stack.
Parameters None
Return Value Pointer to the item on the top of the stack.
Comments This is an SF_Script function. Access the stack using the SF_Push* and

SF_Pop* functions.

flpDouble SF_ScriptPopFloat ()
Removes an item from the top of the stack and returns it as a floating-point number.
Parameter Data Stack Parameter. Item on the top of the stack.

Satellite Forms API Reference
Alphabetical API Reference

517

SF_ScriptPopInt64

SF_ScriptPopInteger

SF_ScriptPopString

SF_ScriptPushFloat

Return Value Floating-point number converted from the top of the stack.
Comments If the item at the top of the stack not a floating-point number, it is converted into

one.
Use the SF_ScriptPop* and SF_ScriptPush* functions to obtain
parameters passed in by script invocations of an extension's methods and to
push return values back on the stack, respectively.

SF_INT64 SF_ScriptPopInt64 ()
Removes an item from the top of the stack and returns it as a 64-bit integer.
Parameter Data Stack Parameter. Item on the top of the stack.
Return Value 64-bit integer converted from the top of the stack.
Comments If the item at the top of the stack is not an integer, it is converted into one.

Use the SF_ScriptPop* and SF_ScriptPush* functions to obtain
parameters passed in by script invocations of an extension’s methods and to
push return values back on the stack, respectively.

long SF_ScriptPopInteger ()
Removes an item from the top of the stack and returns it as an integer.
Parameter Data Stack Parameter. Item on the top of the stack
Return Value Integer converted from the top of the stack.
Comments If the item at the top of the stack is not an integer, it is converted into one.

Use the SF_ScriptPop* and SF_ScriptPush* functions to obtain
parameters passed in by script invocations of an extension's methods and to
push return values back on the stack, respectively.

char * SF_ScriptPopString (WORD ReqLen)
Removes an item from the top of the stack and returns it as a string.
Parameters ReqLen

Data
Size of memory allocated for the data.
Stack Parameter. Item on the top of the stack.

Return Value String converted from the top of the stack.
Comments If the item at the top of the stack not a string, it is converted into one.

Setting ReqLen to zero automatically sizes the allocated memory to the size of
the string.
This function allocates memory with SF_xmalloc. Free the string with
SF_xfree when you are done with it.
Use the SF_ScriptPop* and SF_ScriptPush* functions to obtain
parameters passed in by script invocations of an extension's methods and to
push return values back on the stack, respectively.

void SF_ScriptPushFloat (FlpDouble FloatVal)
Pushes a floating-point value onto the stack.
Parameter FloatVal Floating-point value.

Satellite Forms 8
Development Guide

518

SF_ScriptPushFloatFromStr

SF_ScriptPushInt64

SF_ScriptPushInteger

SF_ScriptPushStaticStr

SF_ScriptPushVar

Return Value None
Comments Use the SF_ScriptPop* and SF_ScriptPush* functions to obtain

parameters passed in by script invocations of an extension's methods and to
push return values back on the stack, respectively.

long SF_ScriptPushFloatFromStr (char *pString)
Pushes a floating-point value onto the stack from a string value.
Parameter pString Pointer to the desired string.
Return Value The length of the string including the terminating zero.
Comments Use the SF_ScriptPop* and SF_ScriptPush* functions to obtain

parameters passed in by script invocations of an extension's methods and to
push return values back on the stack, respectively.

void SF_ScriptPushInt64 (SF_INT64 Int64Val)
Pushes a 64-bit integer onto the stack.
Parameter Int64Val 64-bit integer value.
Return Value None
Comments Use the SF_ScriptPop* and SF_ScriptPush* functions to obtain

parameters passed in by script invocations of an extension's methods and to
push return values back on the stack, respectively.

void SF_ScriptPushInteger (long IntVal)
Pushes an integer onto the stack.
Parameter IntVal Integer value.
Return Value None
Comments Use the SF_ScriptPop* and SF_ScriptPush* functions to obtain

parameters passed in by script invocations of an extension's methods and to
push return values back on the stack, respectively.

long SF_ScriptPushStaticStr (char *pString)
Pushes a string not allocated with SF_xmalloc onto the stack.
Parameter PString Pointer to the desired literal string.
Return Value The length of the string including the terminating zero.

Stack Result. String value.
Comments Use this function to push strings not allocated with SF_xmalloc that are

literals in your code.
Use the SF_ScriptPop* and SF_ScriptPush* functions to obtain
parameters passed in by script invocations of an extension's methods and to
push return values back on the stack, respectively.

void SF_ScriptPushVar (int VarIndex)
Pushes a variable onto the stack.

Satellite Forms API Reference
Alphabetical API Reference

519

SF_ScriptPushVarString

SF_ScriptVarAssign

SF_SearchTable

SF_SetCachedField

Parameter VarIndex Index of the desired variable.
Return Value Stack Result. Value of variable.
Comments Use the SF_ScriptPop* and SF_ScriptPush* functions to obtain

parameters passed in by script invocations of an extension's methods and to
push return values back on the stack, respectively.

char * SF_ScriptPushVarString (char *pString)
Pushes a string allocated with SF_xmalloc onto the stack.
Parameter pString Pointer to the desired string.
Return Value Pointer to the string that is now owned by the Satellite Forms engine.

Stack Result. String value.
Comments Use this function to push strings allocated with SF_xmalloc onto the stack

and pass ownership of the string to the Satellite Forms engine. The engine
frees memory associated with the string, so you do not need to use
SF_xfree.
Use the SF_ScriptPop* and SF_ScriptPush* functions to obtain
parameters passed in by script invocations of an extension's methods and to
push return values back on the stack, respectively.

void SF_ScriptVarAssign (int VarIndex)
Assigns the value on the top of the stack to a variable.
Parameter VarIndex Index of the desired variable.
Return Value None
Comments In order to obtain the index to a particular variable, the script that invoked your

extension must pass back the index.

WORD SF_SearchTable (TABLE_REC *pRec, DB_ITEM *pItem, WORD ColIndex)
Finds data in a table.
Parameters pRec

pItem
ColIndex

Pointer to the desired table.
Data to be looked up.
Index of column where data is to be looked up.

Return Value Zero-based row number of the first record containing the data if successful;
0xFFFF if the function does not find the data.

Comments This function fails if it does not find the data.

DB_ITEM * SF_SetCachedField (CACHED_RECORD *pCachedRec, WORD ColIndex,
void *pData, WORD DataLen)
Replaces the contents of a field in a cached record.
Parameters pCachedRec

ColIndex
pData

DataLen

Pointer to the desired cached record.
Index of column where cached field is to be set.
Pointer to the block of memory that contains the data to be
stored in the cached field.
Size of data pointed at by pData.

Satellite Forms 8
Development Guide

520

SF_SetCtrlObjText

SF_SetDropListText

SF_SetFieldText

SF_SetGlobalPtr

SF_SetInstanceDataPtr

Return Value A pointer to a DB_ITEM structure containing the field’s data; NULL if the
function fails.

Comments A copy of the data passed in is stored in the cached record; therefore, you need
not keep the data pointed to by pData after the function returns.

See Also SF_AllocDbItem, SF_FreeCachedRecordData, SF_GetFieldCopy

void SF_SetCtrlObjText (ControlPtr pCtrlObj, char *pText)
Sets the caption of a Check Box or Radio Button control.
Parameters pCtrlObj

pText
Pointer to the desired Check Box or Radio Button control.
Text to which the control’s caption is to be set.

Return Value None

void SF_SetDropListText (CONTROL_REC *pControl, char *pText)
Sets the caption of a Drop List control's trigger control.
Parameters pControl

pText
Pointer to the desired Drop List control.
Text to which the Drop List control’s trigger control caption is to
be set

Return Value None

void SF_SetFieldText (FieldPtr pField, char *pText, WORD Size)
Sets the caption of an Edit control.
Parameters PField

pText
Size

Pointer to the desired Edit control.
Text to which the Edit control’s caption is to be set.
Size of the caption.

Return Value None

void SF_SetGlobalPtr (void *pGlobals)
Saves a pointer to the global data area an SFX Custom uses.
Parameter pGlobals Pointer to the block of memory that contains the global data.
Return Value None
Comments Allocate the memory block for the global data area with SF_db_xmalloc.

The global data area is common to all instances of an SFX Custom control.
Use SF_SetInstanceDataPtr to save a pointer to an instance data area
for a single instance of an SFX Custom control.

See Also SF_GetGlobalPtr, SF_GetInstanceDataPtr, SF_SetInstanceDataPtr

void SF_SetInstanceDataPtr (void *pData)
Saves a pointer to the instance data area an SFX Custom control uses.
Parameter PData Pointer to the block of memory that contains the instance data.
Return Value None

Satellite Forms API Reference
Alphabetical API Reference

521

SF_SetLookupText

SF_ShowAbout

SF_strcat

SF_strchr

SF_strcmp

SF_strcpy

Comments Allocate the memory block for the data area with SF_db_xmalloc.
The instance data area is specific to a single instance of an SFX Custom
control. Each instance of an SFX Custom control shares a common global data
area and maintains its own instance data area.

See Also SF_GetGlobalPtr, SF_GetInstanceDataPtr, SF_SetGlobalPtr

void SF_SetLookupText (CONTROL_REC *pControl, char *pText)
Sets the caption of a Lookup control.
Parameters pControl

pText
Pointer to the desired Lookup control.
Text to which the lookup control’s caption is to be set.

Return Value None

void SF_ShowAbout ()
Displays the Satellite Forms About box.
Parameters None
Return Value None

char * SF_strcat (char *pszDest, const char *pszSource)
Concatenates a string to another.
Parameters pszDest Pointer to the destination string.

pszSource Pointer to the source string.
Return Value Pointer to the destination string.

char * SF_strchr (const char *pszStr, WChar chr)
Searches a string for specified character.
Parameters pszDest Pointer to the destination string.

pszSource Pointer to the source string.
Return Value Pointer to the destination string.

char * SF_strcmp (const char *pszStr1, const char *pszStr2)
Case-sensitive comparison of two strings.
Parameters pszStr1 Pointer to the first string.

pszStr2 Pointer to the second string.
Return Value Returns 0 if the strings are identical; > 0 if pszStr1 is alphabetically greater

than pszStr2; < 0 if if pszStr1 is alphabetically less than pszStr2.

char * SF_strcpy (char *pszDest, const char *pszSource)
Copies one string to another.

Satellite Forms 8
Development Guide

522

SF_stricmp

SF_strlen

SF_strstr

SF_SysDateToInternalDate

SF_SysTimeToInternalTime

Parameters pszDest Pointer to the destination string.
pszSource Pointer to the source string.

Return Value Pointer to the destination string.

char * SF_stricmp (const char *pszStr1, const char *pszStr2)
Case-insensitive comparison of two strings.
Parameters pszStr1 Pointer to the first string.

pszStr2 Pointer to the second string.
Return Value Returns 0 if the strings are identical; > 0 if pszStr1 is alphabetically greater

than pszStr2; < 0 if if pszStr1 is alphabetically less than pszStr2.
Comments Ignores case.

WORD SF_atoi (const char *pszStr)
Returns the length of the specified string.
Parameters pszStr Pointer to the desired string.
Return Value The length of string in bytes. In multi-byte systems, this may not necessarily

equal to the number of characters in the string.

char * SF_strstr (const char *pszStr, const char *pszToken)
Searches for a sub-string within a string.
Parameters pszStr Pointer to the string to be searched.

pszToken Pointer to the sub-string to search for.
Return Value Pointer to the first occurrence of pszToken in pszString; NULL if not found.

DB_ITEM * SF_SysDateToInternalDate (DWORD NumDays)
Converts days since January 1, 1904, to the Satellite Forms internal date representation in
YYYYMMDD format.
Parameter NumDays Number of days since January 1, 1904.
Return Value Pointer to a string containing the Satellite Forms internal date representation.
Comments This function allocates memory with SF_xmalloc. Free this allocated

memory with SF_xfree.
See Also SF_InternalDateToSysDate, SF_InternalTimeToSysTime, SF_GetSysTime,

SF_SysTimeToInternalTime

DB_ITEM * SF_SysTimeToInternalTime (DWORD NumSecs)
Converts seconds since midnight to the Satellite Forms internal time representation in 24-hour
HH:MM:SS format.
Parameter NumSecs Number of seconds since midnight.
Return Value Pointer to a string containing the Satellite Forms internal time representation.

Satellite Forms API Reference
Alphabetical API Reference

523

SF_TaskDelay

SF_Tone

SF_UnlockRowItem(Obsolete. Do not use)

SF_UnqueryField

Comments If the time passed to this function is more than one day’s worth of seconds, the
function keeps only the number of seconds beyond a whole number of days.
As a result, this function accepts either seconds since midnight or the value
returned by SF_GetSysTime: seconds since 00:00:00, January 1, 1904.
This function allocates memory with SF_xmalloc. Free this allocated
memory with SF_xfree when you are done with it.

See Also SF_InternalDateToSysDate, SF_InternalTimeToSysTime, SF_GetSysTime,
SF_SysDateToInternalDate

void SF_TaskDelay (DWORD mSecs)
Puts the handheld device in energy-conserving doze mode for the specified duration.
Parameter mSecs Duration of the delay in milliseconds.
Return Value None

void SF_Tone (WORD Frequency, WORD Duration, WORD Amplitude)
Issues a tone of a specified frequency, duration, and amplitude.
Parameters Frequency

Duration
Amplitude

Frequency of tone in Hertz.
Duration of tone in milliseconds.
Amplitude of tone (0 to 64).

Return Value None
Comments Pre-Palm III versions of handheld devices have all or nothing interpretations of

the Amplitude parameter.
See Also SF_Beep

void SF_UnlockRowItem (void *pItem, TABLE_REC *pRec, WORD RowNum, WORD
ColIndex)
Unlocks a data item that is locked with SF_LockRowItem. This is an internal system function
and is not normally used.
Parameters pItem

pRec
RowNum
ColIndex

Pointer to a data item in database memory.
Pointer to a table.
Zero-based row number of record containing the data.
Index of column containing the data.

Return Value None
See Also SF_LockRowItem (Obsolete. Do not use), SF_RESIZELOCKEDRECORD

(OBSOLETE. DO NOT USE.)

void SF_UnqueryField (TABLE_REC *pRec, WORD RowNum)
Unlocks and releases a field accessed with SF_QueryField.
Parameters pRec

RowNum
Pointer to the desired table.
Row number of record to be unlocked and released.

Return Value None

Satellite Forms 8
Development Guide

524

SF_ValidateField

SF_xfree

SF_xmalloc

SF_xrealloc

Comments If you do not need to modify the data in the record, this function is a fast
alternative to SF_GetFieldCopy or SF_GetCachedField.

See Also SF_QueryField

CBOOL SF_ValidateField (CONTROL_REC *pControl, TABLE_REC *pRec)
Validates the contents of an Edit control to ensure the correct type.
Parameters pControl

pRec
Pointer to the desired Edit control.
Pointer to the desired table.

Return Value TRUE if the field contains data of the correct type; FALSE if it does not.
Comments This function fails, for example, if there is character data in a numeric field.
See Also SF_FormValidate

void SF_xfree (void *pMem)
Frees a block of memory allocated with SF_xmalloc.
Parameter pMem Pointer to a block of memory allocated with SF_malloc.
Return Value None
Comments SF_xmalloc, SF_xrealloc, and SF_xfree manipulate memory on the

dynamic heap. Use these functions whenever you need to allocate small
amounts of memory. Be aware that the dynamic heap is a very limited
resource.
Memory allocated with these functions is writable when accessed through a
pointer.

See Also SF_db_free, SF_db_malloc, SF_db_realloc, SF_xmalloc, SF_xrealloc

void * SF_xmalloc (WORD Size)
Allocates a block of memory from the dynamic heap.
Parameter Size Requested size of the block of memory.
Return Value Pointer to the allocated block of memory if successful; NULL if the function

fails.
Comments SF_xmalloc, SF_xrealloc, and SF_xfree manipulate memory on the

dynamic heap. Use these functions whenever you need to allocate small
amounts of memory. Be aware that the dynamic heap is a very limited
resource.
Memory allocated by these functions is writable when accessed through a
pointer.

See Also SF_db_free, SF_db_malloc, SF_db_realloc, SF_xfree, SF_xrealloc

void * SF_xrealloc (void *pMem, WORD NewSize)
Changes the size of a block of memory allocated with SF_xmalloc.
Parameters pMem

NewSize
Pointer to a block of memory allocated with SF_xmalloc.
New requested size of the block of memory.

Return Value Pointer to the reallocated block of memory block if successful; NULL if the
function fails.

Satellite Forms API Reference
Alphabetical API Reference

525

Comments The block of memory may move as a result of the reallocation.
SF_xmalloc, SF_xrealloc, and SF_xfree manipulate memory on the
dynamic heap. Use these functions whenever you need to allocate small
amounts of memory. Be aware that the dynamic heap is a very limited
resource.
Memory allocated by these functions is writable when accessed through a
pointer.

See Also SF_db_free, SF_db_malloc, SF_db_realloc, SF_xmalloc, SF_xrealloc

Satellite Forms 8
Development Guide

526

Sample Application: Work Order 527

Chapter 13
Sample Application: Work Order

This chapter presents a relatively complex Satellite Forms application created with
MobileApp Designer. Unlike Chapter , Quick Tour, which walked through the
systematic construction of an application, this chapter focuses on demonstrating the
capabilities of Satellite Forms. The vehicle for this demonstration is the Work Order
application. The intention is not to have you duplicate the application, but to
understand how it operates. This knowledge will be useful when you design and create
your own applications for handheld devices with MobileApp Designer.

To illustrate the material that follows, open the Work Order project with MobileApp
Designer, build it, download it to your handheld device, and then run the application
as you read this chapter. This allows you see how the application works as you read
about the construction and operation of its tables, forms, and controls.

If you installed Satellite Forms in the default installation directory, the Work.sfa
project file is located in:
C:\Satellite Forms 8\Samples\Projects\Work Order\

The Work Order application supports operations at a fictional contracting company.
The company’s owner wanted an efficient way to accomplish the following tasks:

1 Assign individual client sites to crew bosses or individual workers.

2 Supply the crew boss or worker with easy access to contact and location data
clients, as well as any important or useful information. For example, providing
easily identifiable characteristics of the job site to help workers find it.

3 Provide the crew boss or worker with a list of tasks to be done for each client,
complete with a summary description and important details about the job.

4 Give the crew boss or worker a place to record important information regarding
clients or the job being done.

5 Provide the crew boss or worker with an easy way to note when a job is completed.

6 Furnish the company with a fast, efficient method of updating its work-order
database and client information database after each day’s work.

The Work Order application uses three tables and five forms.

The tables are:

• wrkSites: Stores the client contact and location information, the company ID
number, and general notes regarding the client.

Satellite Forms 8
Development Guide

528

• wrkWorkItems: Holds information describing the work tasks, any special
instructions for a task, and a value that signifies whether a job has been completed.
The latter information combines with the wrkLookup table to determine the status
to display for each task. The wrkWorkItems table also has a company ID column
that identifies the client site associated with each job.

• wrkLookup: A lookup table that determines the status of a work task – To Do or
Done.

The forms are:

• Main: The application’s initial form. It contains the client Site List and buttons
that access client information and the work tasks for each site. It also contains a
hidden company ID number that is used to segregate the information displayed on
the Site Summary and Work Item forms by individual client site.

• Info: Contains contact, company, address, and telephone information for each site
listed on the Main form. It also contains a button that accesses the Notes form and
a button that returns to the Main form.

• Notes: Provides a place for communicating or recording important or useful
information about a site. It also contains a button that returns to the Info form.

• Site Summary: Contains a list of jobs for each client site. It also includes the job
status: To Do or Done. Tapping any of the items in the list displays the Work Item
form and with specific information for the task. The form also has a button that
returns to the Main form.

• Work Item: Displays a summary of the task for a particular client site, check boxes
indicating whether the job is complete, and more detailed information about the
site and the task. For example, the work completed, where materials are located,
what preferences the client has, and so on. It also has a button to return to the Site
Summary form.

The remainder of this chapter presents the Work Order application in a manner that
follows its most likely use, beginning with the Work Orders screen, which is the Main
form in MobileApp Designer. Before discussing the forms, however, you need to look
at how the tables are set up.

Work Order application: creating the tables
The first step in creating the Work Order application was to open and save a new
project with MobileApp Designer. The next step was creating the three tables that
contain the Work Order information and lookup values.

wrkSites Table
The wrkSites table, as shown in the following figure, stores the ID numbers
(COMPANYID) for the client sites, contact and address information for the client
sites, and a column (NOTES) for storing any outgoing data – instructions or directions
transferred from the company database to the user’s handheld device – or incoming
data – notes about the client or the work the user entered and transferred back to the
company database from the handheld device. The wrkSites table is the linked table for
three forms: Main, Info, and Notes.

Sample Application: Work Order
Work Order application: creating the tables

529

Figure 13.1 wrkSites Table Layout tab

Satellite Forms 8
Development Guide

530

The sample data in the wrkSites table is shown in the following figure:

Figure 13.2 wrkSites Table Editor tab

Since this data is used only to test the application on the handheld device, it only
contains three records, one each for the companies Acme Corp., MagPaper Inc., and
HAL Corp. In a real application, the information for the tables would come from a
company database or from user input if the application were not meant to be
integrated with a DBMS. The contact and notes information is intended for the user.
The company ID information is essential for the operation of some of the forms and
controls used in this application.

wrkWorkItems Table
The wrkWorkItems table, as shown in the following figure, is the linked table for the
Site Summary and Work Items forms. It contains two informational fields,
SUMMARY and EXTRAINFO, whose main purpose is to present specific
information about work tasks. The COMPANYID field appears in this table, as it did
in the wrkSite table. As in that table, its presence in wrkWorkItems is an important
identifier used to separate work items by site. The COMPLETED column stores the
values for the Yes and No Radio Button controls on the Work Items form. The list box
control on the Site Summary form uses the values in these controls to determine the
work status display for a task: To Do or Done.

Sample Application: Work Order
Work Order application: creating the tables

531

Figure 13.3 wrkWorkItems Table Layout tab

This table also contains some sample data suitable for testing purposes. As shown in
the following figure, the SUMMARY column contains a brief description of work
tasks, the EXTRAINFO column contains more detailed instructions for or information
about the work, and the COMPLETED column stores the values of the Radio Button
controls on the Work Item form.

Satellite Forms 8
Development Guide

532

Figure 13.4 wrkWorkItems Table Editor tab

In the sample data, the values in the COMPLETED column are all zeroes, which
means no work items have been marked as completed. The COMPANYID number
identifies the client site where the task needs to be done. The lookup control on the
Site Summary form uses this number to look up the company name in the wrkSites
table and display it on the handheld device.

Sample Application: Work Order
Work Order application: creating the tables

533

wrkLookup Table
The third table is the wrkLookup table, as shown in the following figure.

Figure 13.5 wrkLookup Table Layout tab

The wrkLookup table contains two columns – a numeric column labeled KEY and a
character column labeled ITEM. As the title of this table indicates, this is a lookup
table. The List Box control on the Site Summary form references it. This control takes
the value stored in the COMPLETED column of the wrkWorkItems table, matches it
to a value stored in the KEY column, and displays the ITEM text listed for that value
on the handheld device’s screen. The following figure shows the editor page for the
wrkLookup table.

Satellite Forms 8
Development Guide

534

Figure 13.6 wrkLookup Table Editor tab

A KEY column value of zero corresponds to the ITEM To Do and a value of one
corresponds to the ITEM Done. So if the COMPLETED column of the wrkWorkItems
table contains a 0, the Site Summary form displays To Do as the work task status on
the handheld device.

Work Order application: creating the forms
TheWork Order application uses five forms. The first form in the application is the
Main form. This is the initial form the Work Order application displays on the
handheld device. Its purpose is to show a list of client sites and give users options for
viewing information about the site or information about the work list for that site.

The work list can be set up for each handheld user by downloading only the required
information to a user’s handheld device. For example, crew bosses would only have
information about sites they are responsible for. For information on individualizing
forms, see Chapter , Integrating with your Database, on page 195.

Creating the Main Form
The first step in creating the Main for is to open the default form, Form 1, and rename
it Main.

Sample Application: Work Order
Work Order application: creating the forms

535

Note Whenever you open a new project, MobileApp Designer creates a default form
called Form 1. This form is also the default initial form for the application. When you
rename the default form to Main, the initial form in the application properties
automatically changes to Main. To use a form other than Form 1 as the application’s
initial form, select Edit > Project Properties... from the MobileApp Designer menu
and select the form’s name in the Initial Form combo box.

Next, set the Form Properties, as shown in the following figure:

Figure 13.7 Main form properties

The Main form is linked to the wrkSites table. Linking the form to a table activates the
User Permissions, which are set as shown in the previous figure. The Create Record
and Delete Record permissions are disabled to prevent users from adding or deleting
clients or tasks. In the case of this sample application, it makes more sense to keep
these functions in the hands of the DBMS manager. Users can change existing
records, as indicated by the Modify permission, but they cannot add or delete them.
For example, the crew boss or worker can mark whether a job is complete or add
comments about the work or client, but cannot delete or add new clients or sites. This
particular form has no controls that change the wrkSites table, so the Modify
permission could be disabled. The Navigate permission allows users to scroll through
records using the handheld device’s scroll buttons. For this form, that means users can
move through the Site List.

Satellite Forms 8
Development Guide

536

The Main form also contains several controls, as shown in the following figure:

Figure 13.8 Main form controls

This form contains Title, Text, and List Box controls, a hidden Edit control, and three
Button controls. The Title and Text controls are simply labels for the form and the Site
List. The other controls perform various functions.

The List Box control displays the client sites. In the sample database, the three clients
are Acme Corp., MagPaper Inc., and HAL Corp. The function of this control is to
display these data items, which are drawn from the COMPANY column in the
wrkSites table. The following figure shows the properties for the List Box control. It is
set to display the contents of the COMPANY column and has no action when tapped.

Sample Application: Work Order
Work Order application: creating the forms

537

Figure 13.9 Main form List Control properties

The Main form also contains a hidden Edit control. It is visible in the upper-right
corner of the Main form, as shown in Figure 13.8 on page 536. It does not, however,
appear on the handheld’s screen.

Satellite Forms 8
Development Guide

538

The hidden Edit control is linked to the COMPANYID column in the wrkSites table
and made invisible by setting the Visible property to False. The Propertyspace palette
for the hidden Edit control is shown in the following figure:

Figure 13.10 Hidden Edit control properties

The properties configuration shown above means the edit control contains, but does
not display, the company ID of the form’s current record. Using the database as an
example, if the user selects Acme Corp. from the Site List, the CurrentID edit control
contains a 1, since that is the COMPANYID value for that record in the wrkSites
table. If the user selects MagPaper Inc. from the list, the CurrentID control contains a
2, and for HAL Corp., it contains a 3. Remember that selecting an item in a List Box
control changes the current record.

Sample Application: Work Order
Work Order application: creating the forms

539

Of the Main form’s three button controls, the Info and Work List buttons are paired:
one uses the CurrentID value for its operation and one does not. The About button
displays version information about the Work Order application. The Info button is
configured as shown in the following figure:

Figure 13.11 Info Button control properties

As shown above, this button’s action is to jump from the Main form to the Info form,
which shows the client contact and location information. The properties of the List
Box control are set so that selecting an item from the list determines the form’s current
record. In other words, if the user selects MagPaper Inc. from the Site List, its record
becomes the Main form’s current record. When the user taps the Info button and
jumps to the Info form, that form displays the contact and location information for the
current record. Since this form and the Main form are associated with the wrkSites
table, the current record for both forms is the same – MagPaper Inc.

The same is true when the user taps the Notes button to jump from the Info form to the
Notes form. The Notes form is also linked to wrkSites, so its current record is the
same as that for the Main and Info forms. Therefore, in this example, jumping to the
Notes form displays the notes for MagPaper Inc.

Satellite Forms 8
Development Guide

540

The second button control on the Main form, labeled Work List, jumps to the Site
Summary form. This button’s properties are much like the Info button with two
important exceptions: the Jump to Form action displays the Site Summary form and
the Record Creation Option is Fail If No Records. The reason for the latter setting is
that the user is not allowed to create a new record or jump to another form if no
records exist.

The major difference between the Work List and Info Button controls is that Work
List installs a filter, as shown in the following figure, after discarding any previously
existing filters.

Figure 13.12 Work List table filter properties

The filter is configured as follows. The table is wrkWorkItems, the column is
COMPANYID, and the criterion is = (equals) snapshot of the CurrentID Edit control.
As a result of these settings, tapping the Work List button clears any existing filters,
installs a filter on table wrkWorkItems to show only records that match the value
currently contained in the CurrentID Edit control, and then jumps to the Site Summary
form. For the example above, MagPaper Inc. was the current record, so the CurrentID
value would be 2. Therefore, when the jump to the Site Summary form takes place, the
filter has already hidden all records in the wrkWorkItems table that do not have a
value of 2 in the COMPANYID column. As a result, the Site Summary form only
displays work tasks and status for jobs assigned to MagPaper Inc. In this application,
this filter remains in place until it is replaced when the user returns to the Main form,
selects a different company from the Site List, and taps the Work List button again.

Sample Application: Work Order
Work Order application: creating the forms

541

Creating the Info Form
The purpose of the Info form is providing contact and address information for each
client site. It also provides a button for accessing the Notes form, where the user can
view or edit more detailed information about the client site.

The Info form’s properties are set as shown in the following figure:

Figure 13.13 Info form properties

The Info form is linked to the wrkSites table. The permissions for this form are set
nearly the same as those for the Main form. The one difference is that the Navigate
permission is disabled to prevent users from scrolling through records on this form.
Since the user has already selected the desired company on the Main form, moving
through the records on the Info form would cause the company information to be out
of sync with the selected company. For example, the user could select MagPaper, Inc.,
jump to the Info form, access the next or previous record deliberately or by accident,
and then jump to the Notes form, thinking the note was for MagPaper Inc. when in
reality it might be Acme Corp. or HAL Corp. The client site name is not displayed on
the Info form. Disabling the Navigate permission prevents this confusion from
occurring.

Satellite Forms 8
Development Guide

542

The Info form contains thirteen controls, as shown in the following figure:

Figure 13.14 Info form with controls

The control configurations in this form are fairly simple. The four Text controls are
labels for the Edit controls. The Edit control below Address does not need a label
since it displays the second address line. The Edit controls are linked to columns in the
wrkSites table that contain the data corresponding to the text labels. For example, the
Edit control to the right of the Contact Text control is linked to the CONTACT
column in the wrkSites table and displays that information for the form’s current
record.

The Graffiti Shift Indicator control in the lower-right corner of the form becomes
active when the user enters data in the Edit or Paragraph controls and changes the shift
mode of the handheld’s Graffiti writing program. The indicator control displays
different symbols depending on the shift state of Graffiti. For more information about
Graffiti, see your handheld device user manuals.

The OK Button control performs the action Return to Prev. Form, so tapping it on the
handheld returns to the Main form. The Notes button control configuration is much
like the Info button on the Main form, jumping to the Notes form. Since the Notes
form is also linked to the wrkSites table, when the jump takes place the data contained
in the NOTES column of the wrkSites table for the current record appears on the
Notes form. If the current record for the Info form is MagPaper Inc., tapping the Notes
button jumps to the Notes form and displays any notes entered for that company.

Sample Application: Work Order
Work Order application: creating the forms

543

Creating the Notes Form
The Notes form provides the contracting company owner a way to convey important
information about a site or client to the crew bosses and workers. It also gives the crew
bosses and workers a way to record important data about a job or client that can be
transferred back to the company database for review by the owner.

The form is simple, consisting of a Paragraph control for displaying or recording the
notes, a Button control to return the user to the Info form, and a Graffiti Shift Indicator
control, as shown in the following figure:

Figure 13.15 Notes form with controls

Satellite Forms 8
Development Guide

544

The Action property of the OK Button control is set to Return to Prev. Form, so
tapping it displays the Info form. The NOTES column of the wrkSites table is the data
source for the Paragraph control, so the Notes form displays the contents of that
column for the current record. The Scrollbar property of the Paragraph control is also
enabled, as shown in the following figure. Setting this property displays a scrollbar on
the handheld device screen if the Paragraph control’s contents are more than one page
or screen can display.

Figure 13.16 Notes Form Paragraph control properties

(The scrollbar feature only functions on PalmPilot.)

Creating the Site Summary Form
The next form is the Site Summary form, as shown in the following figure:

Sample Application: Work Order
Work Order application: creating the forms

545

Figure 13.17 Site Summary form with controls

The purpose of the Site Summary form is to display a list of the work tasks for each
client site along with the status for those jobs: To Do or Done. Tapping any item in the
List control jumps to the Work Item form. This form displays a summary of the work
that needs to be done, check boxes indicating the job status, and a place to view or
record details about the job.

This form contains two Text controls for labels, a Lookup control, a List Box control,
and a Button control configured to return to the Main form. The Lookup control and
the List Box control require further explanation.

Satellite Forms 8
Development Guide

546

The properties for the Lookup control are shown in the following figure:

Figure 13.18 Site Summary Form Lookup control properties

The data source for the Lookup control is the COMPANYID column in the
wrkWorkItems table. The Lookup table properties are set as follows:

• wrkSites is the source Table Name – the control looks in this table for the data to
display.

• The Key Column property is set to COMPANYID. This is the column shared by
the wrkSites and WrkWorkItems tables. The Lookup control examines the value
in the COMPANYID column of the wrkWorkItems table for the current record,
compares it to the COMPANYID values in the wrkSites table, and chooses the
first record that matches.

• The Displayed Column property is set to COMPANY. The Lookup control
displays the contents of this column in the selected record using the wrkSites table
on the handheld device.

Notice that the company name is not included in the linked table. The Lookup control
fetches the company name for the client site selected on the Main form.

Sample Application: Work Order
Work Order application: creating the forms

547

Tapping the Work List button on the Main form after selecting a client from the Site
List installs the filter described under Creating the Main Form on page 534. The
action of the filter limits the available data from the wrkWorkItems table to those
records associated with the COMPANYID value in the Main form’s CurrentID
control when the user taps the Work List button. This means the Lookup control only
finds one value in the COMPANY ID column of the wrkWorkItems table. In the
earlier example, it would find 2, the COMPANYID value for MagPaper Inc. It would
then reference the wrkSites table, find the COMPANYID value 2 in that table, and
display the COMPANY column contents in that record – the company name
MagPaper Inc.

The data displayed by the List Box control on the Site Summary form is drawn from
the wrkWorkItems table, which is linked to the Site Summary form. As the following
figure shows, the List Box control is configured to display two columns from the
wrkWorkItems table – COMPLETED and SUMMARY. With the Work List button
filter in place, these columns only contain the work summary and job status
information for the client site selected from the Site List on the Main form. Returning
to the example, this would be the work summaries and job status for MagPaper Inc.

Figure 13.19 Site Summary Form List Box control properties

Satellite Forms 8
Development Guide

548

The SUMMARY column in the List Box control displays the SUMMARY column
from the wrkWorkItems table, which is the Site Summary form’s linked table. The
COMPLETED column in the list box uses a table lookup function, as shown in the
following figure:

Figure 13.20 Site Summary List Box control: COMPLETED Column Lookup properties

Since one of the purposes of the Site Summary form is to display the To Do or Done
status of a work task, the form needs a List Box control that checks and displays the
status of a work task. When the user displays the Site Summary form, the List Box
control references the value stored in the COMPLETED column of the wrkWorkItems
table, compares that value against the values in the KEY column of the wrkLookup
table, identifies the record in the wrkLookup table that matches that COMPLETED
column value, and displays the ITEM column contents of the matching record in the
wrkLookup table on the handheld device. The result is either To Do, if the value is 0,
or Done, if the value is 1.

Finally, the List Box control action is Jump to Form with the Work Item form as the
target. Tapping any item in the list jumps to that form, which then displays the
summary, job status, and extra information for the selected work task. The Draw
Separator Lines attribute separates the two columns when displayed on the handheld
device.

Creating the Work Item Form
The last form in the Work Order application is the Work Item form. This form
displays a summary of the work to be done for each task listed in the Site Summary
form. It also provides a place to check off the job when it is complete and displays any
detailed information or instructions relevant to the work task.

Sample Application: Work Order
Work Order application: creating the forms

549

The Work Item form is linked to the wrkWorkItems table and configured as shown in
the following figure:

Figure 13.21 Work Item Form properties

The Navigate permission is enabled in this form to allow users to scroll through the
work tasks for a client site without having to return to the Site Summary form.

Satellite Forms 8
Development Guide

550

The Work Items form contains the controls shown in the following figure:

Figure 13.22 Work Item Form with controls

As with other forms in the Work Order application, the Work Item form uses Text
controls to label the Edit controls. There is also a Button control configured with the
action Return to Prev. Form, which in this case is the Site Summary form, and a
Graffiti Shift Indicator control. There is also an Edit control that displays the work
task summary. This control is linked to the SUMMARY column in the wrkWorkItems
table.

The Paragraph control is linked to the EXTRAINFO column of the wrkWorkItems
table. This control displays any specific information or instructions related to a
particular task. Finally, the two Radio Button controls are grouped, as described
below, to provide a way of indicating the job status for a particular task.

First, it is important to understand how the Work Item form displays the information
relevant to the job selected on the Site Summary form. The process begins on the
Main form. When the user arrives at the Work Item form, the filter installed by the
Work List button on the Main form is still in effect. Consequently, the records
available to the form in the wrkWorkItems table are only those associated with the
client site selected on the Main form.

Further refinement of the available information occurs in the list box control on the
Site Summary form. As with the Main form, selecting a work task item from the
Select to view detail list on the Site Summary form makes that item’s record the
current record. Since the Site Summary form and Work Item forms are both linked to
the wrkWorkItems table, the current record remains the same when the user jumps to
the Work Item form. When the user selects a particular job on the Site Summary form,

Sample Application: Work Order
Work Order application: creating the forms

551

for example, Repair front steps from the MagPaper Inc. list, the Work Item form
displays the information relevant to that work task: job not completed, bricks are on
site.

The purpose of the two radio buttons on the Work Item form is to record the job status
for a particular task. This is accomplished on the handheld device by tapping the Yes
or No item displayed on the Work Item screen. In the Work Order application, the Yes
Radio Button control is configured as shown in the following figure:

Figure 13.23 Work Item Form Yes Radio Button control Properties

Satellite Forms 8
Development Guide

552

The COMPLETED column of the wrkWorkItems table is the data source for the Yes
Radio Button control and the Button Index property is set to 1. This tells the control to
store a value of 1 in the COMPLETED column when the radio button is selected.

The No Radio Button control’s properties are identical except for the Button Index
value, which is set to 0. When the user taps the No Radio Button control, it stores a 0
in the COMPLETED column. Since the COMPLETED column is the data source for
both of these controls, they are grouped, which means only one can be selected at a
time. The user can switch back and forth but cannot select both at the same time.
When the user selects one of these radio buttons, it writes its value into the
COMPLETED column, overwriting any previous values stored there. So, for
example, when a crew boss completes a job and taps Yes, the Radio Button control
stores a 1 in the COMPLETED column, overwriting the 0 the No radio button control
previously stored.

The value stored by the action either Radio Button control on the Work Item form also
determines the work status, To Do or Done, displayed on the Site Summary form for
each work task.

Final steps
With the tables and forms complete, all that remains is to set the project properties.
Select Edit > Project Properties... from the MobileApp Designer menu to display the
Project Properties dialog box, as shown in the following figure:

Sample Application: Work Order
Conclusion

553

Figure 13.24 Project Properties dialog box

The application name is Work Order Sample. This name appears on the handheld
device in the Satellite Forms application list. Selecting the name from the list run the
application.

The Main form is set as the application’s Initial Form, meaning that the Main form is
the first one displayed when the Work Order Sample application runs on the handheld
device. Since the default Form 1 MobileApp Designer creates upon opening a new
project became the Main form in the Work Order application, this item is already set.
Using a different form as the application’s initial form requires that you select the
desired form from the Initial Form comebacks.

Conclusion
This example illustrated the following useful application design techniques:

• A List Box control configured with Jump to Form actions

• A List Box control associated with a lookup table to look up a value and display
associated text

• A Button control configured to install a snapshot of control filter that limits form
display contents

• A Lookup control configured to look up an ID number and display associated text

Satellite Forms 8
Development Guide

554

• Setting appropriate user permissions to improve the usability of your applications

Tips and Tricks
Filtering information

555

Appendix A
Tips and Tricks

This appendix discusses how to perform some common operations with Satellite
Forms. These operations include:

• Filtering information

• Creating unique record IDs

• Initializing new records

• Linking Drop List controls

• Creating active bitmaps

• Creating graphical Check Box and Radio Button controls

• Drawing on bitmaps

• Optimizing user permissions

Filtering information
Filters are useful in situations in which a table that contains many records but you only
want to display items that meet certain criteria. See Using table filters on page 184 for
more information on using filters.

As an example, open the Restock sample project using MobileApp Designer. Select
File > Open Project... from the MobileApp Designer menu, navigate to the Restock
sample project, and open the Restock.sfa file. If you installed Satellite Forms in the
default installation directory, the Restock sample project file, Restock.sfa, is located
in:
C:\Satellite Forms 8\Samples\Projects\Restock\

Tip Build and download the Restock application to your handheld device to see how
the filter features work from the user’s perspective.

Open the Main form. When you select a customer using the List_Box_1 control, the
current row of the form changes to the row containing the selected customer name.
Consequently, the hidden edit control called CustID in the upper right-hand corner
always contains the contents of the CUSTID field for the selected customer.

When a user taps the Orders button, the application installs the following filter:
SrdOrders.CUSTID=CustID. This means that in the SrdOrders table, all records in
which the CUSTID field does not match the contents of the CustID edit control, at the

Satellite Forms 8
Development Guide

556

time the user tapped the Orders button, are effectively removed from the view. While
this filter is in effect, the SrdOrders table behaves as if it only contains records with
the selected customer ID.

The Order button’s action property also jumps to the Orders form, which – because of
the filter on its table – only displays the orders of the selected customer.

The Done button in the Orders form jumps back to the Main form and removes all
existing filters, returning the application to its initial state.

Always remember to remove filters when they are no longer necessary or desirable.
Leaving filters in place can cause unexpected behavior in other parts of an application.

Note that filters may also be managed from scripts, with the AddFilter, RemoveFilter,
and RemoveAllFilters functions.

Creating unique record IDs
In database programming, you often need to insert a new record into a table. For
example, if you need to create a new entry in a customer’s order, you must create an
ID number for that item that does not repeat any of the IDs already in the table. This
type of ID is called a unique ID.

You can use several methods to create unique IDs with Satellite Forms. Probably the
most common method is to determine the largest numeric ID in use so far and add one
to it. You only have to calculate an initial unique ID one time at application startup for
each table that requires unique IDs and then simply increment the ID number every
time you need a new one. The code below demonstrates this technique:

Put this code somewhere
that runs one time at

application startup:

'Calculate initial unique ID by getting
'the maximum value in the "ID" field.
UniqueId = Tables("Items").Max("ID")

Put this code where you
create the record that

needs an unique ID:

'Calculate a unique ID for the next new record.
UniqueId = UniqueId + 1

Initializing new records
Satellite Forms supports initializing the fields of new records with filters and scripts.

Initializing with filters
As an example, return to the Restock sample program referred to in Filtering
information on page 555. Whenever a user is working with the Orders form, the
SrdOrders.CUSTID = CustID filter is in effect. Tapping the Add button in the
Orders form jumps to a new form, called Category, and creates a new record. When a
record is created in a table, all filters currently applied to that table are scanned. If
Satellite Forms finds a filter that applies to a table field and the filter has an equality
(=) logical operation in its criterion, the field of the new record is initialized to the
value or snapshot of the control specified in the filter criterion.

Tips and Tricks
Linking Drop List controls

557

Notice, however, that since the filter applies to the table where in which the
application is creating the record, the CUSTID column in the new record is initialized
to the contents of the CustID control at the time the application installed the filter. In
this case, this is the Customer ID of the customer currently being viewed. In this way,
the Restock sample initializes the CUSTID column of new records to the current
customer.

Initializing with scripts
Scripts provide two basic techniques for initializing records. The technique you use
typically depends on whether a script or a control action created the record.

If you are creating records with script commands, simply assign the required values to
the fields right after you create the record, as shown in the following example:

Example A.1 Script Example
'Create a record.
Tables("Tab1").CreateRecord

'Move table position to new record.
'Note: this does not affect the record displays on the form.
Tables("Tab1").MoveLast

'Generate next ID.
UniqueID = UniqueID + 1

'Initialize fields.
Tables("Tab1").Fields("ID") = UniqueID
Tables("Tab1").Fields("Urgent") = "F"

If you are creating records as part of a control action, you need to initialize the record
in an event that occurs after the fact. For example, if you have a button on your form
configured with the action Create Record, which creates a record in the table linked to
current form, you could use code like this in your AfterRecordCreate event
handler:
'Generate next ID.
UniqueID = UniqueID + 1

'Initialize fields.
Fields("ID") = UniqueID
Fields("Urgent") = "F"

You can apply the same technique to records created with a Jump to Form action. The
AfterRecordCreate event fires in the target form after the action creates the record.

Linking Drop List controls
When you need to select from a large number of items, using a single drop list can be
unmanageable. A better solution is to divide the items into categories and have two
separate Drop List controls: one for the category and one for the items in that
category.

Satellite Forms 8
Development Guide

558

Using this arrangement, you select the category from the category Drop List control,
then the item from the item Drop List. Only the items in the selected category appear
in the item list. Implementing this functionality requires filters.

As an example, assume we have three categories – animal, vegetable, and mineral –
and six items – dog and cat (animals), tomato and potato (vegetables), and quartz and
granite (minerals).

Set up two tables as shown in the following example:

Add a Drop List control to a form, name it CatDropList, and set the following
properties:

• Table Name: CategoriesTable

• Key Column: CATID

• Displayed Column: CAT_NAME

Add a second Drop List control to a form, name it ItemsDropList, and set the
following properties:

• Table Name: ItemsTable

• Key Column: ITEMID

• Displayed Column: ITEM_NAME

To link the two Drop List controls, click the CatDropList control and click the Edit
Action button. When the Control Actions and Filters dialog box appears, click the
Filters tab. Click the Add... button, select ItemsTable from the Table combo box,
select CATID from the Column combo box, select equal (=) from the Show record
if column contents... combo box, and finally select CatDropList from the
...snapshot of control combo box.

Table A.1 Categories Table

CATID CAT_NAME

0 Animal

1 Vegetable

2 Mineral

Table A.2 Items Table

CATID ITEMID ITEM_NAME

0 0 Dog

0 1 Cat

1 2 Tomato

1 3 Potato

2 4 Quartz

2 5 Granite

Tips and Tricks
Creating graphical Check Box and Radio Button controls

559

This sets a filter with the following criterion: ItemTable.CATID=CatDropList.

Now when you select a category, a filter is installed that hides all records in
ItemsTable that do not have the selected category ID in the CATID column.
Therefore, when you open the ItemsDropList control, you only see items in the proper
category.

To complete this example, when you leave the form you should delete the filter you
installed on ItemsTable. This is usually done as part of the action of the button that
initiates a jump to the next form. You can remove this specific filter by installing a
filter with the del filter criterion on ItemsTable.CATID, or remove all installed filters
– assuming you no longer need any of them – by checking the Discard Existing
Filters check box on the Filters tab of the Control Actions and Filters dialog box.

Creating graphical Check Box and Radio Button controls
Check Box and Radio Button controls support alternate shapes. The alternate shape
for both controls is a box with text inside its boundaries.

To create a graphical Check Box or Radio Button control, set the Alternate Shape
property to True, leave the text of the control blank, and place a bitmap inside the
control’s box on the form.

The Male and Female Radio Button controls in the Survey #2 program provide an
example of this feature. If you installed Satellite Forms in the default installation
directory, the Survey #2 sample project file, TabSurvey.sfa, is located in:
C:\Satellite Forms 8\Samples\Projects\Survey #2\

Drawing on bitmaps
Placing a bitmap on a form and then placing an ink control over it has a number of
practical applications, for example:

1 You can place a thin dotted-line bitmap on a form to show users where to place
their signatures.

2 You can create a form with a bitmap of a house and allow users to circle areas that
are damaged or require maintenance.

3 You can create an accident report with a bitmap showing a street intersection. A
police officer could then draw the cars’ positions and insert arrows indicating
events leading to the accident.

Note Only the user’s pen strokes, captured in the Ink control, are transferred to the
desktop computer. To show the Ink control on top of a bitmap on the desktop
computer, the desktop application must explicitly overlay the two components.

Satellite Forms 8
Development Guide

560

Creating Color Icons for Palm with MS Paint
Procedure Create a color icon for a Palm OS Satellite Forms application.

1 Using MS Paint or any other bitmap editing application, open the desired template
file.

If you installed Satellite Forms in the default installation directory, the Palm
templates files are located in:
C:\Satellite Forms 8\Templates\

Note Do not resize the template file at any point in this process.

2 If desired, change the transparency color.

The transparency color determines the color that is invisible against the
background. The default is bright green. Any pixels in the icon that you set to this
color are transparent.

3 Use a drawing tool to draw the icon inside the icon bounding box in the template
file. Only the graphics within the box are part of the icon.

Tip You can copy and paste an existing icon into the icon bounding box in the
template file.

4 Use the color tools to set the colors in selected areas of the icon.

• To choose a different color, use the Pick Color tool to select the desired color
from the palette.

5 When you are finished editing the icon image, save only the icon portion of the
template file to a new name with a .BMP extension.

Refer to the instructions for your bitmap editing application for information on how
to save only a portion of an image to a new file.

Optimizing user permissions
Setting a form’s User Permissions properties correctly can greatly improve the
usability of your applications. By default, most form permissions are enabled. When
your application uses scripting or control actions, none of the form permissions apply.

Create Record/Delete
Record

Set the Create and Delete record permissions to False when you have a list of items
(records) that you want to preserve. Users can edit the existing records, but cannot add
or delete records.

There are a number of reasons that this behavior may be necessary. For example, you
have an application maintenance form designed specifically for adding and deleting
records and you want users to access it whenever they want to add or delete records.
You might have a warning message on that form that users should read before they
add or delete, or some of your forms may not operate well when a record is deleted
while the form is still in use. Another reason might be to prevent a novice user from
deleting a piece of important information by mistake.

To see how disabling these permissions in selected forms can improve your
application’s usability, see the discussion under Navigate on page 561.

Tips and Tricks
Optimizing user permissions

561

Delete Last Record The Delete Last record permission is only relevant when a form has the Delete record
permission enabled. Setting the Delete Last record property to False prevents the last
record in a table, or the apparent last record if the table is filtered, from being deleted.
Instead, when you attempt to delete the last record, the record is merely cleared.
Consequently, the table linked to the form can never have its last record removed.
More precisely, disabling this permission still allows the last record to be deleted but
then immediately afterwards automatically creates a new record silently.

Disabling this permission is useful when it doesn’t make sense for a particular form
not to have any records in its linked table. Most forms need a record in which to save
the contents of their controls. For this reason, the Delete Last record permission is
disabled by default.

For an example, see the Customers application in the Samples directory. The Delete
Last record permission is disabled in both forms because if the user deleted the last
record, there would be no place to store any input entered into the forms. If this should
be the case, the Satellite Forms Engine detects the illogical situation, displays a
warning message, and discards any user input. You should design your application so
that this kind of error never occurs.

If you installed Satellite Forms in the default installation directory, the Customers
sample project file, CustomersMDB.sfa, is located in:
C:\Satellite Forms 8\Samples\Projects\Customers\Access 2000\

Modify The Modify permission allows controls to change the form’s underlying table. If you
set this permission to False, any changes a user makes to a form are not saved. You
can use this capability in a browsing form, where a user would be allowed to view
information but not change it.

When you disable this permission, you should also consider disabling the Create
record and Delete record permissions, make your Edit and Paragraph controls read-
only, or both.

Navigate The Navigate permission allows users to move through records on a form using the
handheld device’s scroll buttons. This permission is usually disabled to improve the
usability of your application. If there are multiple forms linked to a particular table,
your application will usually be more intuitive to users if you only give one of the
forms the ability to navigate to the record being viewed. All other forms linked to the
same table only display the record selected in the master form, that is, the with the
Navigate permission set to True.

For an example, see the Customers application in the Samples directory. Only the
Main form allows the user to create, delete, and navigate. If you installed Satellite
Forms in the default installation directory, the Customers sample project file,
CustomersMDB.sfa, is located in:
C:\Satellite Forms 8\Samples\Projects\Customers\Access 2000\

The Notes form, however, has none of these permissions enabled:

• Do not set the Create record permission to True because it is not intuitive to
create a new customer record while viewing the Notes form. The user would see a
confusing blank Notes form when what you probably want is to display a blank
Main form to remind the user that a new customer record has been created.

Satellite Forms 8
Development Guide

562

• Do not set the Delete record permission to True for similar reasons. Deleting a
record while viewing the Notes form simply show some other customer’s notes
after the current record is deleted. The user would have to go back to the Main
form to find out which customer’s notes are being displayed.

• Do not set the Navigate permission to True because the Notes form does not
display the customer name. Paging through the notes without knowing which
customer they belong to would be of limited value.

563

Glossary

Application: A complete system of tables and related forms, scripts, and extensions. The Satellite
Forms MobileApp Designer creates custom applications that run on handheld devices.

Control: A user interface object placed on a form, such as an edit field or drop list. If the con-
trol can display data, the data comes from the current record of the form’s linked table.
The field associated with the control is the control’s data source. A control that dis-
plays data from a data source is called a bound control, because it is bound to the data
source.

Current Record: The record currently displayed on a form.

Database: A collection of related information stored for a specific purpose. In Satellite Forms,
information is stored in a collection of database tables.

Device: A Palm Computing Platform or Pocket PC compatible handheld computer. (See hand-
held.)

DBMS: A database management system used to create database applications. Satellite Forms
is a database management system.

Extension: Extensions come in two varieties: SFX plug-ins, and SFX Custom controls. Written in
C by you or a third party, extensions can be used to manipulate data, perform complex
business logic, and create custom controls and pop-up dialogs.

Field Type: An attribute assigned to a field that determines the type of data the field can contain.
For example, character, numeric, date, and so on.

Field: A single element, or column, in a record. Each field has a unique name describing the
type of value it contains. For example, in a sample CLIENTS table, the field CLIENT-
NAME contains the company name associated with each record. Note: The terms field
and column are used interchangeably throughout this manual.

Form: A “page” or “screen” of information. In Satellite Forms, information can be contained
in a form, or it can be retrieved from a table associated with the form. The table asso-
ciated with a form is the form’s linked table.

Handheld: A Palm Computing Platform or Pocket PC compatible handheld computer.

Record: A row in a data table containing a set of related fields. For example, , as shown in
Figure 2.1 on page 21, an address or contact record typically contains name, company,
address, and phone fields for a particular person or company.

Scripts: A set of Visual Basic-like language statements used to perform tasks. Scripts can add
considerable functionality to your applications, including data validation, numeric cal-
culations, and animations.

Satellite Forms 8
Development Guide

564

Table: An object that stores database information in one or more records (rows). Each record
is separated into fields (columns).

Value: The information contained within an individual table cell. You can think of a value as
the intersection of a record (row) and a field (column). For example, as shown in
Figure 2.1 on page 21, Jack’s Jokes is the value at the intersection of record 1 and the
CLIENTNAME field.

Index 565

Index

A
actions, setting control 177
ActiveSync

controlling without ActiveX 219
ActiveSync ActiveX control 214
ActiveSync ActiveX control events
215
ActiveSync ActiveX control methods
215
ActiveSync ActiveX control properties
219
ActiveSync_GetActiveSyncFolder
218
ActiveX control, HotSync extension
209
language reference

+ 315
adding extensions to Satellite Forms
188
API reference

AdvanceByPage 481
AllocDbItem 481
AppDesIndexToControlRec 482
AppDesIndexToForm 482
AppDesIndexToTable 483
AssertFail 483, 508, 509, 511,

521, 522
Beep 483
ClearInkRecord 484
CloneString 484
ColumnSum 484
CommitCachedRecord 484
CommitFormToCurrentRow 484
CompareFields 485
ConfirmMsg 485
control actions 476
control operations 475
ControlRecToOsObj 485
ConvertDisplayToInternalFormat

485
ConvertInternalToDisplayFormat

486
CreateNewRecord 486
CurrentRowInvalid 486
db_free 487

db_malloc 487
db_realloc 487
DeleteApplication 488
DeleteDatabaseByName 488
DeleteRecord 488
DoButtonBehavior 488
DoTableLookup 489
ExecAutoStamp 489
extension initialization 477
FieldOffset 500
FindFirstRow 489
FindLastRow 489
FindNextRow 490
FindPrevRow 490
FloatAdd 490
FloatDiv 490
FloatEq 491
FloatGe 491
FloatGt 491
floating-point operations 478
FloatLe 492
FloatLt 492
FloatMul 492
FloatNe 493
FloatSub 493
form operations 474
format translation 477
FormatNumber 493
FormCreateRow 494
FormDeleteCurrRow 494
FormDrawAll 494
FormSlotAlloc 495
FormTableSizeChangedNotify

495
FormValidate 495
FreeCachedRecordData 495
GetActiveRecord 495
GetCachedField 496
GetConfigVar 496
GetControlAction 496
GetControlBottom 497
GetControlDataCopy 497
GetControlFlags 497
GetControlLeft 497
GetControlNextControl 498

GetControlOsIndex 498
GetControlPageNum 498
GetControlRight 498
GetControlTop 498
GetControlType 499
GetCurrentForm 499
GetEngineVersion 500
GetExtensionControl 500
GetFieldCopy 500
GetFirstForm 501
GetFocusObjectPtr 501
GetFormCurrentRow 501
GetFormCurrPage 501
GetFormFirstControl 502
GetFormFlags 502
GetFormNextForm 502
GetFormNumPages 502
GetFormOsFormPtr 503
GetFormReturnIndex 503
GetFormTableIndex 503
GetGlobalPtr 503
GetInstanceDataPtr 503
GetNumRows 504
GetSysTime 504
GetTableColNumDecimals 504
GetTableColType 504
GetTableColWidth 505
GetUIObjectParent 505
GotoNewForm 505
GotoRow 506
IdToControlRec 506
IdToObjectPtr 506
InfoMsg 506
InfoMsgInt 506
InstallHandler 507
InternalDateToSysDate 507
InternalTimeToSysTime 508
InternalToPilotDate 508
InternalToPilotTime 508
LoadCtrlObjFromCachedRecord

509
LoadDropListFromCache-

dRecord 509
LoadFieldFromCachedRecord

509

Satellite Forms 8
Development Guide

566

LoadFormWithCurrentRow 510
LoadInkFieldFromCachedRecord

510
LockRecordAndCache 510
memory allocation 472
messages and errors 479
miscellaneous 480
OsIndexToControlRec 511
PerformControlAction 512
PilotDateToInternal 512
PilotTimeToInternal 512
PointInControl 512
PointToControlRec 513
QueryField 513
RenderInk 514
RowMeetsCriteria 514
SaveCtrlObjToCachedRecord 514
SaveDropListToCachedRecord

515
SaveFieldToCachedRecord 515
SaveInkFieldToCachedRecord

515
ScriptExecExt 515
ScriptFloatToString 516
ScriptFreeParamMem 516
ScriptGetTosPtr 516
scripting 478
ScriptPopFloat 516
ScriptPopInt64 517
ScriptPopInteger 517
ScriptPopString 517
ScriptPushFloat 517
ScriptPushFloatFromStr 518
ScriptPushInt64 518
ScriptPushInteger 518
ScriptPushStaticStr 518
ScriptPushVar 518
ScriptPushVarString 519
ScriptVarAssign 519
SearchTable 519
SetCachedField 519
SetCtrlObjText 520
SetDropListText 520
SetFieldText 520
SetGlobalPtr 520
SetInstanceDataPtr 520
SetLookupText 521
ShowAbout 521
SysDateToInternalDate 522
SysTimeToInternalTime 522
table operations 472
TaskDelay 523
Tone 523
UI object conversions 476

UnqueryField 523
ValidateField 524
xfree 524
xmalloc 524
xrealloc 524

App Designer 20
Edit menu 80
File menu 78
General toolbar 94
Handheld menu 88
overview 67
quick tour 39
Script menu 89
uninstalling 36
View menu 85
Window menu 92
working with 101

application, definition of 563
applications

development overivew 100
downloading and testing 35
menus 227
opening on handheld 226
planning 99
tutorial ,setting properties for 60,

170
tutorial, creating new 39
tutorial, downloading and testing

on Palm OS devices 63
tutorial, uploading changes to a PC

64
uninstalling from Palm OS devices

226
applications list 226
assigning action to buttons, tutorial 58
Auto Stamp control 164

B
Binary data type 106
Binary field type 22, 104
Bitmap control 158
bitmaps

drawing on 559
language reference

And 324
Not 413
Or 416
Xor 465

Button control 142
tutorial, inserting 53

buttons, assigning action to, tutorial 58

C
CameraCapture 333

CeDirectoryExists 223
CeFileExists 223
CeMakeDirectory 223
CeRemote.dll 219
Character data type 106
Character field type 22, 103
Check Box control form property 136
check boxes, creating graphical 559
CheckPassword 218
CM_Connect 335
CM_ConnectByIndex 336
CM_Disconnect 336
CM_GetConnectionName 337
CM_HasConnectionMgr 337
language reference

' 315
& 315
_ 316

control actions, overview 178
control origin and size indicators 115
control, definition of 563
controls

Auto Stamp control 164
Bitmap control 158
Button control 142
Check Box control property 136
Drop List control 149
Edit control property 130
form controls 124
Grafitti Shift Indicator control 162
Ink control 155
List Box control 145
Lookup control 153
overview 24
Paragraph control property 133
properties specific to individual

125
Radio Button control 139
setting actions and filters 177
SFX Custom control 166
Title control property 125
working with 124

CopyAppToPalmPilot 202
CopyAppToPalmPilotEx 202
CopyTableToPalmPilot 203
CopyTableToPalmPilotEx 203
CreateFolder 217
creating

applications, tutorial 39
color icons for Palm 560
forms 114
graphical check boxes and radio

buttons 559
Satellite Forms scripts 309

Index 567

SFX controls 471
SFX plug-ins 468
tables 104
tutorial, new forms 54
unique record IDs 556

Creator ID 83
current record, definition of 563
customer support 3

D
database

definition of 563
HotSync Extension ActiveX con-

trol 197, 214
integrating with, overview 195
integrating with, process 196

DatabaseFromPPC 216
DatabaseToPPC 216
Date data type 106
Date field type 22, 104
DB_ITEM 481
DBMS, definition of 563
deleting

applications from Palm OS devic-
es 226

device
definition of 563

language reference
/ 316
 316

documentation
conventions 3
Satellite Forms related documents

2
downloading and testing applications
35
downloading and testing applications,
tutorial 63
drawing on bitmaps 559
Drop List control 149
drop lists, linking 557

E
Edit control form property 130
Edit menu, Satellite Forms 227
editing

forms 114
table data 113

Enable Filter Wildcard Value option 84
enhancements

color 190
language reference

= 317
extension method reference

IH_BMPColorSettings 386
IH_DeleteFile 387
IH_FileToBinField 387
IH_FileToHexText 388
IH_InkFieldToBitmap 389, 390
IH_PalmFileSettings 390
SU_BlockAllHotKeys 449
SU_CheckSystemPassword 450
SU_ClipboardTextGet 450
SU_ClipboardTextSet 450
SU_DelAppPref 450
SU_GetAppPref 450
SU_GetBatteryPercent 451
SU_GetDeviceID 451
SU_GetDeviceModel 451
SU_GetMemInfo 452
SU_GetOSVersion 452
SU_GetOwnerName 452
SU_GetPlatform 452
SU_GetPluggedIn 452
SU_HideStartIcon 453
SU_HotSync 453
SU_LaunchApp 453
SU_LaunchAppAtEvent 454
SU_LaunchAppAtTime 454
SU_ModemHotSync 455
SU_ParseDelimText 455
SU_PasteChars 455
SU_PlaySoundFile 455
SU_PowerOff 456
SU_QueueVirtualKey 456
SU_RegDeleteKey 456
SU_RegReadKey 457
SU_RegWriteKey 457
SU_Reset 457
SU_SetAppPref 458
SU_SetAutoOffTime 458
SU_SetDeviceDateTime 458
SU_SetHotKey 458
SU_SysIdleTimerReset 459
SU_TapScreen 459

extension, definition of 563
extensions

Aceeca IDVERIFI Bar Code 270
adding 188
Battery Info 271
Color Graphics 271
Color Slider control 273
Colorizer 272
ConnectionMgr 275
DatalogicScan control 275
DynamicInputArea 276
EditEx 277
FindFiles 278

FormNavHelper 279
Generic 280
GoogleMaps 280
GPS 280
HoneywellScan control 281
HotSync ActiveX control 209
HyperLink 282
InkHelper 283
IntermecScan 283
JanamUtils 284
LaunchReturn 285
LaunchURL 285
Math 286
Memory 287
overview 27
Printer 288
Puma Beam DB 289
Puma Data Manager 289
Puma Error Manager 291
Puma Resource Manager 291
Px Screen Tool 292
Random Number Generator 292
ScreenSize 293
Serial Port 293
ShowImage 294
Slider 295
SocketScan control 296
Square Root 297
Strings 298
Symbol Integrated Scanner control

298
Symbol MSR control 302
SysUtils 303
TCPIP Winsock/Internet 305
UnitechScan control 306
WM5Camera 307

F
FF_DeviceHasVFS 357
FF_FindClose 358
FF_FindFirstDir 358
FF_FindFirstFile 359
FF_FindNextDir 360
FF_FindNextFile 361
FF_FindNextFileVFS 361
FF_GetFileAttr 361
FF_GetFileCreator 362
FF_GetFileDateBackedUp 363
FF_GetFileDateCreated 363
FF_GetFileDateModified 364
FF_GetFileName 364
FF_GetFileSize 365
FF_GetFileType 365
FF_GetFileVersion 365

Satellite Forms 8
Development Guide

568

FF_GetLastErr 365
FF_GetNextVolRef 366
FF_GetVFSLabel 366
FF_GetVFSVolRef 367
FF_SetCaseSensitive 367
FF_SetVFSVolRef 367
FF_ShowPrivateVolumes 367
field type, definition of 563
field types, supported 22, 103
field, definition of 563
File menu, App Designer 78
FileDelete 217
FileExists 217
FileGetFromPPC 217
FileSendToPPC 216
filters

installing table control 184
mathematical operators 186
setting control actions and 177
tips on using 555

form, definition of 563
forms

controls 124
controls, specifying placement of

115
creating and editing 114
design grid 115
design window 114
how Satellite Forms uses 22
laying out and manipulating con-

trols 124
multiple pages and 26
properties 116
tutorial, creating 54
tutorial, setting properties 47
zooom factor, specifying 115

G
General toolbar, App Designer 94
GetFile 221
GetScan 378
GetScreenHeight 378
GetScreenSize 378
GetScreenWidth 378
GetTable 222
GetTableFromPalmPilot 203
GPS_CalcDistance 380, 381
GPS_GetPosLatitude 381
GPS_GetPosLongitude 382
GPS_GetPosOther 382
GPS_GetPosUTCTime 383
GPS_GetValidFields 383
GPS_HasGPSAPI 384
GPS_OpenGPS 384

Graffiti Shift Indicator control 162
graphical check boxes, creating 559
language reference

> 317
>= 318

H
Handheld menu, App Designer 88
handheld, definition of 563
handhelds

navigating between records 27
opening an application 226
Options menu 228
Record menu 227
Satellite Forms application list 226
Satellite Forms application menus

227
Satellite Forms engine, starting

225
using Satellite Forms on 225

hardware requirements
Satellite Forms development 29

Help menu, App Designer 93
HotSync

controlling without ActiveX 210
HotSync ActiveX control 197
HotSync Extension ActiveX control 20
HsAbandonChanges 204
HsAddUser 205
HsCommitChanges 205
HsDeleteUser 205
HsFindUserByID 205
HsGetFirstUser 206
HsGetNextUser 206
HsRenameUser 207

I
icons, creating in color for Palm 560
importing tables 108
initializing new records 556

using filters to 556
using scripts to 557

Ink control 155
installing

overview 31
Satellite Forms engine overview

32
Satellite Forms RDK engine on

Palm OS device 33
Satellite Forms SDK engine on

Palm OS device 33
Installing redistributable components
239, 250
Installing redistributable components

interactively 240, 250
Installing redistributable components
silently 240, 250
InstallPrcFileToPalmPilot 204
integration with database

overview 195
process 196

J
Jump to Multiple Forms control action
180

K
keywords and operators 311

L
language reference 314

 318
AddFilter 322
AfterAppStart 322
AfterChange 322, 323
AfterLoad 323
AfterOpen 323
AfterRecordCreate 323
Asc 324
Backup 326
Beep 326
BeforeAppEnd 327
BeforeClose 327
BeforeRecordDelete 327
BinarySearch 328, 438
Bool 328
CanClose 334
Caption 334
Chr 334
CLR_DroplistColor 339
Colorize 337
ColorizeButton 338
ColorizeCheckbox 338
ColorizeEdit 339
ColorizeExtra 339
ColorizeForm 340
ColorizeInk 340
ColorizeListbox 340
ColorizeLookup 341
ColorizeParagraph 341
ColorizeRadio 342
ColorizeText 342
CommitData 342
Count 344
CreateRecord 344
CurrentPage 345
CurrentRecord 345
Data 345

Index 569

DateToSysDate 346
Delay 346
DeleteRecord 347
Dim 347
Empty 353
ExecAction 355
Exit 356
Fail 357
Float 368
For...To...Next 369
FormatDate 369
FormatDateN 370
FormatNumber 371
FormatTime 371
FormatTimeN 371
Function 372
GetAppCreator 373
GetAppName 373
GetAppPath 374
GetAppVersion 374
GetEngineVersion 375
GetFocus 376
GetLastKey 376
GetPenStatus 377
GetSelection 379
GetSysDate 379
GetSysTime 379
GetTickCount 380
GetTickFrequency 380
GetUserID 380
GetUserName 380
HexStringFromInt 385
If...Then 385
Index 391
InsertionSort 391
InStr 391
Int 392
Int64 392
IntFromHexString 392
IsEmpty 393
KillTimer 394
Left 397
Len 397
Lookup 399
LTrim 403
Max 404
Mid operator 407
Mid statement 407
Min 408
Mod 408
MoveCurrent 409
MoveFirst 409
MoveLast 410
MoveNext 411

MoveNextPage 411
MovePrevious 412
MovePreviousPage 412
MoveRecord 413
MsgBox 413
OnClick 414
OnKey 414
OnPenDown 414
OnPenUp 415
OnTimer 415
OnValidate 415
Pad 416
Position 424
PreviousForm 425
Prompt 425
PromptCustom 426
QuickSort 426
Quit 427
ReadOnly 424, 427
RecordValid 428
Refresh 428
RemoveAllFilters 429
RemoveFilter 429
RemoveRecord 429
Repaint 429
Requery 430
Right 431
RTrim 437
Scroll 437
SetDelayToChangeEvent 439
SetFocus 440
SetSelection 369, 377, 443, 444
SetTimer 445
Show 445
Str 448
StrCompare 448
StrCompSort 448
String 449
Sub 459
Sum 460
SysDateToDate 460
SystemDateFormat 461
SystemTimeFormat 461
SysTimeToTime 461
TimeToSysTime 462
Tone 462
Trim 462
UCase 463
Underline 463
Visible 368, 463
While...Wend 464

LaunchURL 394
language reference

 319

linking drop lists 557
List Box control 145
language reference

And 324
Not 413
Or 416
Xor 465

Lookup control 153

M
magnification, specifying for forms
115
mathematical operators for filters 186
MDAC, supported version 30
menus

Edit, App Designer 80
File, App Designer 78
Handheld, App Designer 88
Options, Satellite Forms 228
Records, Satellite Forms 227
Satellite Forms application 227
Script, App Designer 89
View, App Designer 85
Window, App Designer 92

language reference
. 319

methods, using 308
MobileApp Designer

uninstalling 36
multiple forms and pages 26
language reference

* 320

N
navigating between records 27
new records, initializing 556
new records, initializing with filters
556
new records, initializing with scripts
557
language reference

 320
Numeric data type 106
Numeric field type 22, 103

O
object methods 308
object model 258
object properties, accessing 308
operating systems, supported for devel-
opment 29, 238, 249
optimizing user permissions 560
Options menu, Satellite Forms 228
Oracle Lite compatible tables 84

Satellite Forms 8
Development Guide

570

P
pages

multiple forms and 26
Palm OS devices

deleting applications 226
tutorial, downloading and testing

applications 63
uninstalling Satellite Forms engine

37
Palm, creating color icons for 560
Paragraph control form property 133

tutorial inserting 56
placement

specifying for form controls 124
placement of controls on forms, speci-
fying 115
Platforms 28
Pocket PC devices

uninstalling Satellite Forms engine
37

properties
controls, specific to individual 125

Q
quick tour of App Designer 39

R
Radio Button control 139
radio buttons, creating 559
record, definition of 563
Records menu, Satellite Forms 227
registering Satellite Forms 4
relational databases and Satellite
Forms 21
RemoteDeInit 222
RemoteInit 222
RemoveFile 222
RemoveFolder 218

S
sample application Work Order 527
Satellite Forms

components 20
hardware requirements for devel-

op,ent 29
Options menu 228
Records menu 227
supported OS for development 29,

238, 249
upgrading 31

Satellite Forms App Designer
overview 67

Satellite Forms application menus 227
Satellite Forms applications list 226

Satellite Forms engine 20
installation, overview 32
starting 225
uninstalling from Palm OS device

37
uninstalling from Pocket PC de-

vice 37
Satellite Forms RDK engine

installation on Palm OS device 33
Satellite Forms SDK engine

installation on Palm OS device 33
Script menu, App Designer 89
scripting 27
scripting language reference 257, 314

app object 259
control object 261
controls collection 262
extension object 262
extensions collection 263
field object 263
fields collection 264
form object 264
forms collection 265
keywords and operators 311
table object 266

Scripts
creating 309

scripts 257
scripts, definition of 563
SendFile 221
SendTable 221
setting application properties, tutorial
60, 170
setting control actions 177
setting form properties, tutorial 47
SF_PPCDeInitConnection 222
SF_PPCDirExists 223
SF_PPCFileExists 223
SF_PPCGetFile 221
SF_PPCInitConnection 222
SF_PPCMakeDirectory 223
SF_PPCSendFile 221
SFConvertPDB Usage 211
SFConvertPDB Utility 211
SFX controls 27

creating 471
SFX Custom control 166
sfx plug-in

creating 468
SFX plug-ins 27
Snap-To Grid option, forms 115
software requirements

Satellite Forms development 29,
238, 249

StartApp 218
starting

Satellite Forms Engine 225
language reference

- 321
support 3
Synchronization for Pocket PC 211
system requirements 29

Satellite Forms development 29
Satellite Forms runtime engine 30,

238, 249

T
Table dialog box 104
table, definition of 564
tables

creating 104
editing 113
how Satellite Forms uses 21
importing 108
installing control filters 184
layout 105
specifying name 105

Targets 28
technical support 3
testing applications 35
Text and Edit controls

tutorial, inserting 49
Time data type 106
Time field type 22, 104
Time Stamp 106
Time Stamp field type 22, 104
tips

creating color icons for Palm 560
creating graphical check boxes and

radio buttons 559
creating unique record ids 556
drawing on bitmaps 559
filtering information 555
initializing new records 556
linking drop lists 557
optimizing user permissions 560

Title control
tutorial, inserting a 48

Title control form property 125
toolbar

General, App Designer 94
True/False data type 106
True/False field type 22, 104
tutorial

overview 39

U
uninstalling

Index 571

App Designer 36
MobileApp Designer 36
Satellite Forms applications from

Palm OS devices 226
Satellite Forms engine from a

Palm OS device 37
unique record IDs, creating 556
upgrading, from earlier versions of Sat-
ellite Forms 31
uploading changes to a PC, tutorial 64
user permissions, optimizing permis-
sions, optimizing user 560
using

table control filters 184
using color in your application 190

V
value, definition of 564
View menu, App Designer 85

W
Window menu, App Designer 92

Satellite Forms 8
Development Guide

572

	Contents
	Examples
	Figures
	Tables
	Preface
	Who should read this guide
	What this guide contains
	Satellite Forms documentation
	Document conventions
	Technical Support
	Contacting Technical Support

	What’s New
	What's New in Satellite Forms Version 8
	What's New in Satellite Forms V7.2
	What's New in Satellite Forms V7.1
	What's New in Satellite Forms V7.0

	Satellite Forms Overview
	Introducing Satellite Forms
	Major components of Satellite Forms
	Licensing Satellite Forms
	Relational databases and Satellite Forms
	How Satellite Forms uses tables
	How Satellite Forms uses forms
	Controls used in Satellite Forms
	Multiple forms and pages
	Navigating between pages and records
	Scripting
	Extensions: SFX plug-ins and SFX Custom controls
	Targets and Platforms

	Installing Satellite Forms
	System requirements
	Satellite Forms development computer
	Satellite Forms runtime engine

	Upgrading from previous releases
	Installation overview
	Installing the Satellite Forms engine on handheld devices

	Uninstalling Satellite Forms

	Quick Tour
	Overview
	Step 1. Opening a new project
	Step 2. Creating the CtvCustomers table
	Step 3. Creating the Main form
	Step 4. Creating the Notes form
	Step 5. Assigning actions to the buttons
	Step 6. Setting project properties
	Step 7. Downloading the application to a handheld and testing
	Step 8. Uploading changes and verifying
	Conclusion

	MobileApp Designer Reference
	MobileApp Designer main window
	MobileApp Designer menus
	MobileApp Designer File menu
	MobileApp Designer Edit menu
	MobileApp Designer View menu
	MobileApp Designer Handheld menu
	MobileApp Designer Build menu
	MobileApp Designer Window menu
	MobileApp Designer Help menu

	MobileApp Designer toolbars
	General toolbar
	MobileApp Designer Control Palette toolbar
	MobileApp Designer Misc toolbar

	Creating your Application
	Planning your application
	Overview: phases of application development
	Phase 1 - Working with MobileApp Designer
	Phase 2 - Integrating applications with your database management system
	Phase 3 - Deploying your application

	Phase 1: Working with MobileApp Designer
	Working with tables
	Creating a new table
	Importing tables
	Editing table data

	Creating and editing forms
	Form design window
	Form properties

	Working with menus
	Working with Menubars
	Menu Properties
	Menu Item Properties

	Using controls
	Working with controls
	Control Properties

	Configuring application properties
	Creating and Assigning a launcher icon image for your application
	Creating a splash screen
	Installing the engine and downloading the application
	Testing the application

	Using Actions, Filters, Extensions, and Color
	Setting up actions
	Control actions

	Using table filters
	Adding or editing a filter
	Mathematical operators for filters
	Filter tips

	Adding extensions to Satellite Forms
	Using color in your application
	Platform-specific considerations
	Color Values
	Coloring the Form
	Coloring Controls
	Setting Extra Colors

	Integrating with your Database
	Overview
	Integrating a Satellite Forms database with a Corporate database

	Satellite Forms HotSync ActiveX control for Palm OS
	Satellite Forms HotSync ActiveX control events
	HotSyncstatus event parameters
	Satellite Forms HotSync ActiveX control methods
	Satellite Forms HotSync ActiveX control properties

	HotSync and Satellite Forms HotSync ActiveX control
	HotSync without ActiveX
	Satellite Forms Synchronization for Pocket PC
	SFConvertPDB Utility
	Satellite Forms ActiveSync ActiveX control for Pocket PC
	Satellite Forms ActiveSync ActiveX control events
	Satellite Forms ActiveSync ActiveX control methods
	Satellite Forms ActiveSync ActiveX control properties

	ActiveSync without ActiveX
	Satellite Forms CeRemote.dll methods
	Satellite Forms CeRemote.dll result values

	Using Satellite Forms on Handheld Devices
	Starting the Satellite Forms engine
	Using the Satellite Forms Applications list
	Palm OS Satellite Forms application menus

	Deploying your Application
	Overview
	Deploying Palm OS applications
	Create and assign application icons
	Change the default creator ID
	Modify the HotSyncStatus Handler
	Update older applications
	Set up the redistribution kit
	Distributing the application
	Upgrading previous releases of your application
	Installing redistributable components
	Installing your application on the device

	Working with the Palm OS install utility
	Deploying Pocket PC applications
	Create and assign application icons
	Prepare the ActiveSync event handler application
	Set up the redistribution kit
	Distributing the application
	Installing redistributable components
	Installing your application on the device

	Working with the Pocket PC install utility
	Install utility command line switches
	Working with the install utility configuration file

	Creating a custom installer for Palm or Pocket PC applications

	Satellite Forms Scripting Language Reference
	Overview of the Satellite Forms scripting language
	The Satellite Forms object model
	Object properties, methods, and events
	SFX plug-in and control properties and methods
	SFX plug-in and control extensions included with Satellite Forms
	Accessing properties
	Using methods
	Understanding events

	Creating a Satellite Forms script
	Satellite Forms scripting language keywords and operators
	Satellite Forms scripting language keywords
	Satellite Forms scripting language conversion operators
	Satellite Forms scripting language comparison operators
	Satellite Forms scripting language arithmetic operators
	Satellite Forms scripting language logical and bitwise operators
	Satellite Forms scripting language string operators
	Satellite Forms scripting language miscellaneous operators

	Satellite Forms scripting language reference

	Satellite Forms API Reference
	Satellite Forms API Overview
	Creating an SFX plug-In
	Creating an SFX Custom control
	API function reference by category
	Memory allocation functions
	Table Operation functions
	Form operation functions
	Control operation functions
	Control action functions
	UI object conversion functions
	Format translation functions
	SFX extension initialization functions
	Floating-point operation functions
	Scripting functions
	Message and error functions
	Miscellaneous functions

	Alphabetical API Reference

	Sample Application: Work Order
	Work Order application: creating the tables
	wrkSites Table
	wrkWorkItems Table
	wrkLookup Table

	Work Order application: creating the forms
	Creating the Main Form
	Creating the Info Form
	Creating the Notes Form
	Creating the Site Summary Form
	Creating the Work Item Form
	Final steps

	Conclusion

	Tips and Tricks
	Filtering information
	Creating unique record IDs
	Initializing new records
	Initializing with filters
	Initializing with scripts

	Linking Drop List controls
	Creating graphical Check Box and Radio Button controls
	Drawing on bitmaps
	Creating Color Icons for Palm with MS Paint
	Optimizing user permissions

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

